Preferred Language
Articles
/
ijs-4410
Sequential feature selection for heart disease detection using random forest
...Show More Authors

Heart disease identification is one of the most challenging task that requires highly experienced cardiologists. However, in developing nations such as Ethiopia, there are a few cardiologists and heart disease detection is more challenging. As an alternative solution to cardiologist, this study proposed a more effective model for heart disease detection by employing random forest and sequential feature selection (SFS). SFS is an effective approach to improve the performance of random forest model on heart disease detection. SFS removes unrelated features in heart disease dataset that tends to mislead random forest model on heart disease detection. Thus, removing inappropriate and duplicate features from the training set with sequential feature selection approach plays significant role in improving the performance of the proposed model. The proposed feature selection approach is evaluated using real world clinical heart disease dataset collected from University of California Irvine (UCI) data repository. Empirical test on validation set reveals that the proposed model performs well as compared to the existing methods. Overall, the state of-the-art heart disease detection model with classification accuracy of 98.53% is proposed for heart disease detection using SFS and random forest model.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Mar 05 2017
Journal Name
Baghdad Science Journal
Detection of wheat damping off and root rot disease pathogenic fungi and it bio control by pseudomonas fluorescens
...Show More Authors

This study was conducted to determine the fungal cause and bio control of damping off and root rot of wheat plants by using pseudomonas fluorescens under greenhouse and field conditions. Results showed isolation of eight species from the soil and roots to deferent region of Baghdad government. Rhizoctonia solani (Rs) and Fusarium solani (Fs) were the predominant damping off fungus with frequency 60 and 52% respectively. Led the using of bacteria formulations such as crud suspension , pure bacteria filtration and pure living cells in culture medium inhibit all type fungi with rates ranging from 84-96% , 80- 93% and 75-88% respectively. Rs and Fs were more pathogenesis under greenhouse conditions, with incidence of 80 and 68% and disease s

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Thu Dec 15 2011
Journal Name
Iraqi Journal Of Laser
Generation of Truly Random QPSK Signal Waveforms for Quantum Key Distribution Systems Based on Phase Coding
...Show More Authors

In this work a model of a source generating truly random quadrature phase shift keying (QPSK) signal constellation required for quantum key distribution (QKD) system based on BB84 protocol using phase coding is implemented by using the software package OPTISYSTEM9. The randomness of the sequence generated is achieved by building an optical setup based on a weak laser source, beam splitters and single-photon avalanche photodiodes operating in Geiger mode. The random string obtained from the optical setup is used to generate the quadrature phase shift keying signal constellation required for phase coding in quantum key distribution system based on BB84 protocol with a bit rate of 2GHz/s.

View Publication Preview PDF
Publication Date
Thu Nov 01 2018
Journal Name
International Journal Of Biomathematics
A non-conventional hybrid numerical approach with multi-dimensional random sampling for cocaine abuse in Spain
...Show More Authors

This paper introduces a non-conventional approach with multi-dimensional random sampling to solve a cocaine abuse model with statistical probability. The mean Latin hypercube finite difference (MLHFD) method is proposed for the first time via hybrid integration of the classical numerical finite difference (FD) formula with Latin hypercube sampling (LHS) technique to create a random distribution for the model parameters which are dependent on time [Formula: see text]. The LHS technique gives advantage to MLHFD method to produce fast variation of the parameters’ values via number of multidimensional simulations (100, 1000 and 5000). The generated Latin hypercube sample which is random or non-deterministic in nature is further integ

... Show More
View Publication
Scopus (7)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat Feb 02 2019
Journal Name
Journal Of The College Of Education For Women
Defining the Feature of Cold Wave (Al-Marba'aniyah) in Iraq: Defining the Feature of Cold Wave (Al-Marba'aniyah) in Iraq
...Show More Authors

Abstract:
Al-Marba'aniyah, which is a long cold wave, was defined by ancient
Iraqis. It represents the coldest days in Iraq. In this research paper, a new
scale was put to define it. It shows that the period between the minimum
temperature degree recoded in December and the minimum temperature
degree recorded in January is considered to be the period of Al-Marba'aniyah.
The research concluded that Al-Marba'aniyah is unsteady and it changes in
the days of its occurrence. It was also concluded that the dates of the
beginning and the end of Al-Marba'aniyah are unsteady, too. Moreover, it was
found out that each of the Siberian high, European high, and finally the
subtropical high are the responsible systems for

... Show More
View Publication Preview PDF
Publication Date
Mon Jul 01 2013
Journal Name
2013 35th Annual International Conference Of The Ieee Engineering In Medicine And Biology Society (embc)
Protocol for site selection and movement assessment for the myoelectric control of a multi-functional upper-limb prosthesis
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Wed Jan 09 2002
Journal Name
Journal Of Pharmaceutical Negative Results¦ Volume
Antibacterial Improvement of Disease-Protective Face Masks Using Gold Nanoparticles
...Show More Authors

In this work, the antibacterial effectiveness of face masks made from polypropylene, against Candida albicans and Pseudomonas aeruginosa pathogenic was improved by soaking in gold nanoparticles suspension prepared by a one-step precipitation method. The fabricated nanoparticles at different concentrations were characterized by UV-visible absorption and showed a broad surface Plasmon band at around 520 nm. The FE-SEM images showed the polypropylene fibres highly attached with the spherical AuNPs of diameters around 25 nm over the surfaces of the soaked fibres. The Fourier Transform Infrared Spectroscopy (FTIR) of pure and treated face masks in AuNPs conform to the characteristics bands for the polypropylene bands. There are some differences

... Show More
Scopus (1)
Scopus
Publication Date
Fri Feb 17 2023
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
Deploying Facial Segmentation Landmarks for Deepfake Detection
...Show More Authors

Deepfake is a type of artificial intelligence used to create convincing images, audio, and video hoaxes and it concerns celebrities and everyone because they are easy to manufacture. Deepfake are hard to recognize by people and current approaches, especially high-quality ones. As a defense against Deepfake techniques, various methods to detect Deepfake in images have been suggested. Most of them had limitations, like only working with one face in an image. The face has to be facing forward, with both eyes and the mouth open, depending on what part of the face they worked on. Other than that, a few focus on the impact of pre-processing steps on the detection accuracy of the models. This paper introduces a framework design focused on this asp

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Detection of Autism Spectrum Disorder Using A 1-Dimensional Convolutional Neural Network
...Show More Authors

Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D

... Show More
View Publication Preview PDF
Scopus (19)
Crossref (13)
Scopus Crossref
Publication Date
Wed Jan 15 2020
Journal Name
Iraqi Journal Of Laser
Optimizing the Secure Key Rate of a Single Sequential Quantum Repeater with Two Different Quantum Memories
...Show More Authors

Quantum channels enable the achievement of communication tasks inaccessible to their
classical counterparts. The most famous example is the distribution of secret keys. Unfortunately, the rate
of generation of the secret key by direct transmission is fundamentally limited by the distance. This limit
can be overcome by the implementation of a quantum repeater. In order to boost the performance of the
repeater, a quantum repeater based on cut-off with two different types of quantum memories is suggestd,
which reduces the effect of decoherence during the storage of a quantum state.

View Publication Preview PDF
Publication Date
Sat Sep 23 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Brain Tumor Detection Method Using Unsupervised Classification Technique
...Show More Authors

Magnetic  Resonance  Imaging  (MRI)  is  one  of  the  most important diagnostic tool. There are many methods to segment the

tumor of human brain. One of these, the conventional method that uses pure image processing techniques that are not preferred because they need human interaction for accurate segmentation. But unsupervised methods do not require any human interference and can segment   the   brain   with   high   precision.   In   this   project,   the unsupervised  classification methods have been used in order to detect the tumor  disease from MRI images.    These metho

... Show More
View Publication Preview PDF