Preferred Language
Articles
/
ijs-4410
Sequential feature selection for heart disease detection using random forest
...Show More Authors

Heart disease identification is one of the most challenging task that requires highly experienced cardiologists. However, in developing nations such as Ethiopia, there are a few cardiologists and heart disease detection is more challenging. As an alternative solution to cardiologist, this study proposed a more effective model for heart disease detection by employing random forest and sequential feature selection (SFS). SFS is an effective approach to improve the performance of random forest model on heart disease detection. SFS removes unrelated features in heart disease dataset that tends to mislead random forest model on heart disease detection. Thus, removing inappropriate and duplicate features from the training set with sequential feature selection approach plays significant role in improving the performance of the proposed model. The proposed feature selection approach is evaluated using real world clinical heart disease dataset collected from University of California Irvine (UCI) data repository. Empirical test on validation set reveals that the proposed model performs well as compared to the existing methods. Overall, the state of-the-art heart disease detection model with classification accuracy of 98.53% is proposed for heart disease detection using SFS and random forest model.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Journal Of Southwest Jiaotong University
Image Segmentation for Skin Detection
...Show More Authors

Human skin detection, which usually performed before image processing, is the method of discovering skin-colored pixels and regions that may be of human faces or limbs in videos or photos. Many computer vision approaches have been developed for skin detection. A skin detector usually transforms a given pixel into a suitable color space and then uses a skin classifier to mark the pixel as a skin or a non-skin pixel. A skin classifier explains the decision boundary of the class of a skin color in the color space based on skin-colored pixels. The purpose of this research is to build a skin detection system that will distinguish between skin and non-skin pixels in colored still pictures. This performed by introducing a metric that measu

... Show More
View Publication
Crossref (4)
Crossref
Publication Date
Sat May 08 2021
Journal Name
Iraqi Journal Of Science
EEG Signals Analysis for Epileptic Seizure Detection Using DWT Method with SVM and KNN Classifiers
...Show More Authors

Epilepsy is a critical neurological disorder with critical influences on the way of living of its victims and prominent features such as persistent convulsion periods followed by unconsciousness. Electroencephalogram (EEG) is one of the commonly used devices for seizure recognition and epilepsy detection. Recognition of convulsions using EEG waves takes a relatively long time because it is conducted physically by epileptologists. The EEG signals are analyzed and categorized, after being captured, into two types, which are normal or abnormal (indicating an epileptic seizure).  This study relies on EEG signals which are provided by Arrhythmia Database. Thus, this work is a step beyond the traditional database mission of delivering use

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Wed Jul 19 2017
Journal Name
International Journal Of Advances In Chemical Engineering And Biological Sciences
Detection of Aflatoxin M1 in Pasteurized Canned Milk and Using of UV Radiation for Detoxification
...Show More Authors

The current study was designed to investigate the presence of aflatoxin M1 in 25 samples of pasteurized canned milk which collected randomly from some Iraqi local markets using ELISA technique. Aflatoxin M1 was present in 21 samples, the concentration of aflatoxin M1 ranged from (0.25-50 ppb). UV radiation (365nm wave length) was used for detoxification of aflatoxin M1 (sample with highest concentration /50 ppb of aflatoxin M1 in two different volumes ((25 & 50 ml)) for two different time (15 & 30 min) and 30, 60, 90 cm distance between lamp and milk layer were used for this purpose). Results showed that distance between lamp and milk layer was the most effective parameter in reduction of aflatoxin M1, and whenever the distance increase the

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Tue Jan 18 2022
Journal Name
Iraqi Journal Of Science
Survey of Scale-invariant Feature Transform Algorithm
...Show More Authors

The effectiveness of detecting and matching of image features using multiple views of a specified scene using dynamic scene analysis is considered to be a critical first step for many applications in computer vision image processing. The Scale invariant feature transform (SIFT) can be applied very successfully of typical images captured by a digital camera.
In this paper, firstly the SIFT and its variants are systematically analyzed. Then, the performances are evaluated in many situations: change in rotation, change in blurs, change in scale and change in illumination. The outcome results show that each algorithm has its advantages when compared with other algorithms

View Publication Preview PDF
Publication Date
Mon Oct 30 2023
Journal Name
Iraqi Journal Of Science
SMS Spam Detection Using Multiple Linear Regression and Extreme Learning Machines
...Show More Authors

     With the growth of the use mobile phones, people have become increasingly interested in using Short Message Services (SMS) as the most suitable communications service. The popularity of SMS has also given rise to SMS spam, which refers to any unwanted message sent to a mobile phone as a text. Spam may cause many problems, such as traffic bottlenecks or stealing important users' information. This paper,  presents a new model that extracts seven features from each message before applying a Multiple Linear Regression (MLR) to assign a weight to each of the extracted features. The message features are fed into the Extreme Learning Machine (ELM) to determine whether they are spam or ham. To evaluate the proposed model, the UCI bench

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Mon Dec 20 2021
Journal Name
Baghdad Science Journal
Crucial File Selection Strategy (CFSS) for Enhanced Download Response Time in Cloud Replication Environments
...Show More Authors

Cloud Computing is a mass platform to serve high volume data from multi-devices and numerous technologies. Cloud tenants have a high demand to access their data faster without any disruptions. Therefore, cloud providers are struggling to ensure every individual data is secured and always accessible. Hence, an appropriate replication strategy capable of selecting essential data is required in cloud replication environments as the solution. This paper proposed a Crucial File Selection Strategy (CFSS) to address poor response time in a cloud replication environment. A cloud simulator called CloudSim is used to conduct the necessary experiments, and results are presented to evidence the enhancement on replication performance. The obtained an

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Sat Mar 30 2019
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Selection of Suitable Drilling Parameters for obtaining high Rate of Penetration in Majnoon Oilfield
...Show More Authors

Several directional wells have been drilled in Majnoon oilfield at wide variation in drilling time due to different drilling parameters applied for each well. This technical paper shows the importance of proper selection of the bit, Mud type, applied weight on Bit (WOB), Revolution per minute (RPM), and flow rate based on the previous wells drilled. Utilizing the data during drilling each section for directional wells that's significantly could improve drilling efficiency presented at a high rate of penetration (ROP). Based on the extensive study of three directional wells of 35 degree inclination (MJ-51, MJ-52, and MJ-54) found that the applied drilling parameters for MJ-54 and the bit type within associated drilling parameters to drill

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri May 15 2015
Journal Name
Euphrates Journal Of Agricultural Science
Performance Evaluation of field and genetic for genotype selection from Tomato Lycopersicon esculeuntum Mill.
...Show More Authors

The study was conducted at the fields of the Department of Horticulture and Landscape Gardening,College of Agriculture, University of Baghdad during the growing seasons of 2013- 2014 .forPerformance of Evaluation Vegetative growth and yield traits and estimate some important geneticparameter on seven selected breed of tomato which (S1-S7 ) Pure line. the results found significantdifferences between breeds in all study trails except clusters flowering number .S1 significantly plantlength which reached 227.3 .Also S1,S2 and S4 were significantly increased the number fruit for plant,Fruit weight Increased in S3 ,S6 and plant yield. Increased in S1, S4 ,S5. Genetic variation valueswere low in Floral clusters , TSS and fruit firmest and medium i

... Show More
Publication Date
Tue Jan 17 2023
Journal Name
International Journal Of Online And Biomedical Engineering (ijoe)
An Image Feature Extraction to Generate a Key for Encryption in Cyber Security Medical Environments
...Show More Authors

Cyber security is a term utilized for describing a collection of technologies, procedures, and practices that try protecting an online environment of a user or an organization. For medical images among most important and delicate data kinds in computer systems, the medical reasons require that all patient data, including images, be encrypted before being transferred over computer networks by healthcare companies. This paper presents a new direction of the encryption method research by encrypting the image based on the domain of the feature extracted to generate a key for the encryption process. The encryption process is started by applying edges detection. After dividing the bits of the edge image into (3×3) windows, the diffusions

... Show More
View Publication
Scopus (6)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sat Feb 01 2020
Journal Name
Journal Of Economics And Administrative Sciences
Applying some hybrid models for modeling bivariate time series assuming different distributions for random error with a practical application
...Show More Authors

Abstract

  Bivariate time series modeling and forecasting have become a promising field of applied studies in recent times. For this purpose, the Linear Autoregressive Moving Average with exogenous variable ARMAX model is the most widely used technique over the past few years in modeling and forecasting this type of data. The most important assumptions of this model are linearity and homogenous for random error variance of the appropriate model. In practice, these two assumptions are often violated, so the Generalized Autoregressive Conditional Heteroscedasticity (ARCH) and (GARCH) with exogenous varia

... Show More
View Publication Preview PDF
Crossref