Heart disease identification is one of the most challenging task that requires highly experienced cardiologists. However, in developing nations such as Ethiopia, there are a few cardiologists and heart disease detection is more challenging. As an alternative solution to cardiologist, this study proposed a more effective model for heart disease detection by employing random forest and sequential feature selection (SFS). SFS is an effective approach to improve the performance of random forest model on heart disease detection. SFS removes unrelated features in heart disease dataset that tends to mislead random forest model on heart disease detection. Thus, removing inappropriate and duplicate features from the training set with sequential feature selection approach plays significant role in improving the performance of the proposed model. The proposed feature selection approach is evaluated using real world clinical heart disease dataset collected from University of California Irvine (UCI) data repository. Empirical test on validation set reveals that the proposed model performs well as compared to the existing methods. Overall, the state of-the-art heart disease detection model with classification accuracy of 98.53% is proposed for heart disease detection using SFS and random forest model.
As the diversity and characteristics of Trichoderma species are difficult to determine using morphological methods, henceforth molecular tools are crucial. This study utilized random amplified polymorphic DNA (RAPD) technique to investigate the genetic diversity of Trichoderma with sexual phase Hypocrea and to identify similarities and differences in the phylogenetic tree. Nine Iraqi Trichoderma strains (four strains of T. atroviride, one strain of Hypocrea lixii, two strains of T. gamsii and two strains of T. longibriantium) were examined in this research. The genomic DNA of each species was extracted and amplified with each of the fiv
... Show MoreThe frequency dependent noise attenuation (FDNAT) filter was applied on 2D seismic data line DE21 in east Diwaniya, south eastern Iraq to improve the signal to noise ratio. After applied FDNAT on the seismic data, it gives good results and caused to remove a lot of random noise. This processing is helpful in enhancement the picking of the signal of the reflectors and therefore the interpretation of data will be easy later. The quality control by using spectrum analysis is used as a quality factor in proving the effects of FDNAT filter to remove the random noise.
Digital images are open to several manipulations and dropped cost of compact cameras and mobile phones due to the robust image editing tools. Image credibility is therefore become doubtful, particularly where photos have power, for instance, news reports and insurance claims in a criminal court. Images forensic methods therefore measure the integrity of image by apply different highly technical methods established in literatures. The present work deals with copy move forgery images of Media Integration and Communication Center Forgery (MICC-F2000) dataset for detecting and revealing the areas that have been tampered portion in the image, the image is sectioned into non overlapping blocks using Simple
... Show MoreSecure data communication across networks is always threatened with intrusion and abuse. Network Intrusion Detection System (IDS) is a valuable tool for in-depth defense of computer networks. Most research and applications in the field of intrusion detection systems was built based on analysing the several datasets that contain the attacks types using the classification of batch learning machine. The present study presents the intrusion detection system based on Data Stream Classification. Several data stream algorithms were applied on CICIDS2017 datasets which contain several new types of attacks. The results were evaluated to choose the best algorithm that satisfies high accuracy and low computation time.
In this work, animal bones with different shapes and sizes were used to study the characteristics of the ground penetrating Radar system wares reflected by these bones. These bones were buried underground in different depths and surrounding media. The resulting data showed that the detection of buried bones with the GPR technology is highly dependent upon the surrounding media that the bones were buried in. Humidity is the main source of signal loss in such application because humidity results in low signal-to-noise ratio which leads to inability to distinguish between the signal reflected by bones from that reflected by the dopes in the media such as rock .
The science of information security has become a concern of many researchers, whose efforts are trying to come up with solutions and technologies that ensure the transfer of information in a more secure manner through the network, especially the Internet, without any penetration of that information, given the risk of digital data being sent between the two parties through an insecure channel. This paper includes two data protection techniques. The first technique is cryptography by using Menezes Vanstone elliptic curve ciphering system, which depends on public key technologies. Then, the encoded data is randomly included in the frame, depending on the seed used. The experimental results, using a PSNR within avera
... Show MoreSeventy five isolates of Saccharomyces cerevisiae were identified, they were isolated from different local sources which included decayed fruits and vegetables, vinegar, fermented pasta, baker yeast and an alcohol factory. Identification of isolates was carried out by cultural microscopical and biochemical tests. Ethanol sensitivity of the isolates showed that the minimal inhibitory concentration of the isolate (Sy18) was 16% and Lethal concentration was 17%. The isolate (Sy18) was most efficient as ethanol producer 9.36% (v/w). The ideal conditions to produce ethanol from Date syrup by yeast isolate, were evaluated, various temperatures, pH, Brix, incubation period and different levels of (NH4)2HP04. Maximum ethanol produced was 10
... Show MoreThe study of the validity and probability of failure in solids and structures is highly considered as one of the most incredibly-highlighted study fields in many science and engineering applications, the design analysts must therefore seek to investigate the points where the failing strains may be occurred, the probabilities of which these strains can cause the existing cracks to propagate through the fractured medium considered, and thereafter the solutions by which the analysts can adopt the approachable techniques to reduce/arrest these propagating cracks.In the present study a theoretical investigation upon simply-supported thin plates having surface cracks within their structure is to be accomplished, and the applied impact load to the
... Show MoreAlzheimer’s Disease (AD) is the most prevailing type of dementia. The prevalence of AD is estimated to be around 5% after 65 years old and is staggering 30% for more than 85 years old in developed countries. AD destroys brain cells causing people to lose their memory, mental functions and ability to continue daily activities. The findings of this study are likely to aid specialists in their decision-making process by using patients’ Magnetic Resonance Imaging (MRI) to distinguish patients with AD from Normal Control (NC). Performance evolution was applied to 346 Magnetic Resonance images from the Alzheimer's Neuroimaging Initiative (ADNI) collection. The Deep Belief Network (DBN) classifier was used to fulfill classification f
... Show More