Throughout this work we introduce the notion of Annihilator-closed submodules, and we give some basic properties of this concept. We also introduce a generalization for the Extending modules, namely Annihilator-extending modules. Some fundamental properties are presented as well as we discuss the relation between this concept and some other related concepts.
Throughout this paper we introduce the notion of coextending module as a dual of the class of extending modules. Various properties of this class of modules are given, and some relationships between these modules and other related modules are introduced.
Through this paper R represent a commutative ring with identity and all R-modules are unitary left R-modules. In this work we consider a generalization of the class of essential submodules namely annihilator essential submodules. We study the relation between the submodule and his annihilator and we give some basic properties. Also we introduce the concept of annihilator uniform modules and annihilator maximal submodules.
The concept of epiform modules is a dual of the notion of monoform modules. In this work we give some properties of this class of modules. Also, we give conditions under which every hollow (copolyform) module is epiform.
Since 1980s, the study of the extending module in the module theory has been a major area of research interest in the ring theory and it has been studied recently by several authors, among them N.V. Dung, D.V. Huyn, P.F. Smith and R. Wisbauer. Because the act theory signifies a generalization of the module theory, the author studied in 2017 the class of extending acts which are referred to as a generalization of quasi-injective acts. The importance of the extending acts motivated us to study a dual of this concept, named the coextending act. An S-act MS is referred to as coextending act if every coclosed subact of Ms is a retract of MS where a subact AS of MS is said to be coclosed in MS if whenever the Rees factor â„ is small in th
... Show MoreLet be a commutative ring with an identity and be a unitary -module. We say that a non-zero submodule of is primary if for each with en either or and an -module is a small primary if = for each proper submodule small in. We provided and demonstrated some of the characterizations and features of these types of submodules (modules).
In this work, We introduce the concepts of an FP-Extending, FP-Continuous and FP-Quasi-Continuous which are stronger than P-Extending, P-Continuous and P-Quasi-Continuous. characterizations and properties of FP-Extending, FP-Continuous and FP-Quasi-Continuous are obtained . A module M is called FP-Extending ( FP-Continuous, FP-Quasi-Continuous) if every submodule is P-Extending (P-Continuous, P-Quasi-Continuous) .
Let R be commutative ring with identity and let M be any unitary left R-module. In this paper we study the properties of ec-closed submodules, ECS- modules and the relation between ECS-modules and other kinds of modules. Also, we study the direct sum of ECS-modules.
In this article, we study the notion of closed Rickart modules. A right R-module M is said to be closed Rickart if, for each , is a closed submodule of M. Closed Rickart modules is a proper generalization of Rickart modules. Many properties of closed Rickart modules are investigated. Also, we provide some characterizations of closed Rickart modules. A necessary and sufficient condition is provided to ensure that this property is preserved under direct sums. Several connections between closed Rickart modules and other classes of modules are given. It is shown that every closed Rickart module is -nonsingular module. Examples which delineate this concept and some results are provided.
Throughout this paper, three concepts are introduced namely stable semisimple modules, stable t-semisimple modules and strongly stable t-semisimple. Many features co-related with these concepts are presented. Also many connections between these concepts are given. Moreover several relationships between these classes of modules and other co-related classes and other related concepts are introduced.
The main aim of this research is to present and to study several basic characteristics of the idea of FI-extending semimodules. The semimodule is said to be an FI-extending semimodule if each fully invariant subsemimodule of is essential in direct summand of . The behavior of the FI-extending semimodule with respect to direct summands as well as the direct sum is considered. In addition, the relationship between the singularity and FI-extending semimodule has been studied and investigated. Finally extending propertywhich is stronger than FI extending, that has some results related to FI-extending and singularity is also investigated.