Preferred Language
Articles
/
ijs-4065
Z-Small Submodules and Z-Hollow Modules
...Show More Authors

A submodule Ϝ of an R-module Ε is called small in Ε if whenever  , for some submodule W of Ε , implies  . In this paper , we introduce the notion of Ζ-small submodule , where a proper submodule Ϝ of an R-module Ε is said to be Ζ-small in Ε if  , such that  , then  , where  is the second singular submodule of Ε . We give some properties of Ζ-small submodules . Moreover , by using this concept , we generalize the notions of hollow modules , supplement submodules, and supplemented modules into Ζ-hollow modules, Ζ-supplement submodules, and Ζ-supplemented modules. We study these concepts and provide some of their relations .

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Mar 30 2023
Journal Name
Iraqi Journal Of Science
Supplement Extending Modules
...Show More Authors

In this note we consider a generalization of the notion of extending modules namely supplement extending modules. And study the relation between extending and supplement extending modules. And some properties of supplement extending. And we proved the direct summand of supplement extending module is supplement extending, and the converse is true when the module is distributive. Also we study when the direct sum of supplement extending modules is supplement extending.

View Publication Preview PDF
Publication Date
Tue Nov 30 2021
Journal Name
Iraqi Journal Of Science
The Dual Notion of St-Polyform Modules
...Show More Authors

The concept of St-Polyform modules, was introduced and studied by Ahmed in [1], where a module M is called St-polyform, if for every submodule N of M and for any homomorphism 𝑓:N M; ker𝑓 is St-closed submodule in N. The novelty of this paper is to dualize this class of modules, the authors call it CSt-polyform modules, and according to this dualizations, some results which appeared in [1] are dualized for example we prove that in the class of hollow modules, every CSt-polyform module is coquasi-Dedekind. In addition, several important properties of CSt-polyform module are established, and other characterization of CSt-polyform is given. Moreover, many relationships of CSt-polyform modules with other related concepts are

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Mar 14 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
2-Regular Modules II
...Show More Authors

An R-module M is called a 2-regular module if every submodule N of M is 2-pure submodule, where a submodule N of M is 2-pure in M if for every ideal I of R, I2MN = I2N, [1]. This paper is a continuation of [1]. We give some conditions to characterize this class of modules, also many relationships with other related concepts are introduced.

View Publication Preview PDF
Publication Date
Mon Jul 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On the Space of Primary La-submodules
...Show More Authors

     Suppose that F is a reciprocal ring which has a unity and suppose that H is an F-module. We topologize La-Prim(H), the set of all primary La-submodules of H , similar to that for FPrim(F), the spectrum of fuzzy primary ideals of F, and examine the characteristics of this topological space. Particularly, we will research the relation between La-Prim(H) and La-Prim(F/ Ann(H)) and get some results.

View Publication Preview PDF
Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Semihollow-Lifting Modules and Projectivity
...Show More Authors

Throughout this paper, T is a ring with identity and F is a unitary left module over T. This paper study the relation between semihollow-lifting modules and semiprojective covers. proposition 5 shows that If T is semihollow-lifting, then every semilocal T-module has semiprojective cover. Also, give a condition under which a quotient of a semihollow-lifting module having a semiprojective cover. proposition 2 shows that if K is a projective module. K is semihollow-lifting if and only if For every submodule A of K with K/( A) is hollow, then K/( A) has a semiprojective cover.

View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Sun Apr 26 2020
Journal Name
Iraqi Journal Of Science
On ST-essential (complement) submodules
...Show More Authors

View Publication Preview PDF
Scopus Crossref
Publication Date
Fri May 01 2020
Journal Name
Journal Of Physics: Conference Series
ESSENTIAL T-hollow-lifting module
...Show More Authors
Abstract<p>Let M be a R-module, where R be a commutative ring with identity, In this paper, we defined a new kind of module namely ET-hollow lifting module, Let T be a submodule of M, M is called ET-hollow lifting module if for every sub-module H of M with <inline-formula> <tex-math><?CDATA $\frac{M}{H}$?></tex-math> <math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mrow> <mfrac> <mi>M</mi> <mi>H</mi> </mfrac> </mrow> </math></inline-formula></p> ... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Mon Jul 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
⊕-s-extending modules
...Show More Authors

     The -s-extending modules will be purpose of this paper, a module M  is -s-extending if each submodule in M is essential in submodule has a supplement that is direct summand. Initially, we give relation between this concept with weakly supplement extending modules and -supplemented modules. In fact, we gives the following implications:

Lifting modules   -supplemented modules   -s-extending modules  weakly supplement extending modules.

It is also we give examples show that, the converse of this result is not true. Moreover, we study when the converse of this result is true.

View Publication Preview PDF
Crossref
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
e*-Extending Modules
...Show More Authors

     This paper aims to introduce the concepts of  -closed, -coclosed, and -extending modules as generalizations of the closed, coclossed, and extending modules,  respectively. We will prove some properties as when the image of the e*-closed submodule is also e*-closed and when the submodule of the e*-extending module is e*-extending. Under isomorphism, the e*-extending modules are closed. We will study the quotient of e*-closed and e*-extending, the direct sum of e*-closed, and the direct sum of e*-extending.

View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Oct 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Pure Maximal Submodules and Related Concepts
...Show More Authors

      In this work we discuss the concept of pure-maximal denoted by (Pr-maximal) submodules as a generalization to the type of R- maximal submodule, where a proper submodule  of an R-module  is called Pr- maximal if  ,for any submodule  of W is a pure submodule of W, We offer some properties of a Pr-maximal submodules, and we give Definition of the concept, near-maximal, a proper submodule  

 of an R-module  is named near (N-maximal) whensoever  is pure submodule of  such that  then K=.Al so we offer the concept Pr-module, An R-module W is named Pr-module, if every proper submodule of  is Pr-maximal. A ring  is named Pr-ring if whole proper ideal of  is a Pr-maximal ideal, we offer the concept pure local (Pr-loc

... Show More
View Publication Preview PDF
Crossref