The concept of St-Polyform modules, was introduced and studied by Ahmed in [1], where a module M is called St-polyform, if for every submodule N of M and for any homomorphism ð‘“:N M; kerð‘“ is St-closed submodule in N. The novelty of this paper is to dualize this class of modules, the authors call it CSt-polyform modules, and according to this dualizations, some results which appeared in [1] are dualized for example we prove that in the class of hollow modules, every CSt-polyform module is coquasi-Dedekind. In addition, several important properties of CSt-polyform module are established, and other characterization of CSt-polyform is given. Moreover, many relationships of CSt-polyform modules with other related concepts are considered such as copolyform, epiform, CSt-semisimple, -nonsingular modules, and some others will be introduced such as non CSt-singular and G. coquasi-Dedekind modules.
In this paper, we introduce a new concept named St-polyform modules, and show that the class of St-polyform modules is contained properly in the well-known classes; polyform, strongly essentially quasi-Dedekind and ?-nonsingular modules. Various properties of such modules are obtained. Another characterization of St-polyform module is given. An existence of St-polyform submodules in certain class of modules is considered. The relationships of St-polyform with some related concepts are investigated. Furthermore, we introduce other new classes which are; St-semisimple and ?-non St-singular modules, and we verify that the class of St-polyform modules lies between them.
We introduce the notion of t-polyform modules. The class of t- polyform modules contains the class of polyform modules and contains the class of t-essential quasi-Dedekind.
Many characterizations of t-polyform modules are given. Also many connections between these class of modules and other types of modules are introduced.
The main goal of this paper is to dualize the two concepts St-closed submodule and semi-extending module which were given by Ahmed and Abbas in 2015. These dualizations are called CSt-closed submodule and cosemi-extending mod- ule. Many important properties of these dualizations are investigated, as well as some others useful results which mentioned by those authors are dualized. Furthermore, the relationships of cosemi-extending and other related modules are considered.
The purpose of this paper is to introduce dual notions of two known concepts which are semi-essential submodules and semi-uniform modules. We call these concepts; cosemi-essential submodules and cosemi-uniform modules respectively. Also, we verify that these concepts form generalizations of two well-known classes; coessential submodules and couniform modules respectively. Some conditions are considered to obtain the equivalence between cosemi-uniform and couniform. Furthermore, the relationships of cosemi-uniform module with other related concepts are studied, and some conditional characterizations of cosemi-uniform modules are investigated.
The duo module plays an important role in the module theory. Many researchers generalized this concept such as Ozcan AC, Hadi IMA and Ahmed MA. It is known that in a duo module, every submodule is fully invariant. This paper used the class of St-closed submodules to work out a module with the feature that all St-closed submodules are fully invariant. Such a module is called an Stc-duo module. This class of modules contains the duo module properly as well as the CL-duo module which was introduced by Ahmed MA. The behaviour of this new kind of module was considered and studied in detail,for instance, the hereditary property of the St-duo module was investigated, as the result; under certain conditions, every St-cl
... Show MoreIn this paper, we develop the work of Ghawi on close dual Rickart modules and discuss y-closed dual Rickart modules with some properties. Then, we prove that, if are y-closed simple -modues and if -y-closed is a dual Rickart module, then either Hom ( ) =0 or . Also, we study the direct sum of y-closed dual Rickart modules.
The main objective of this thesis is to study new concepts (up to our knowledge) which are P-rational submodules, P-polyform and fully polyform modules. We studied a special type of rational submodule, called the P-rational submodule. A submodule N of an R-module M is called P-rational (Simply, N≤_prM), if N is pure and Hom_R (M/N,E(M))=0 where E(M) is the injective hull of M. Many properties of the P-rational submodules were investigated, and various characteristics were given and discussed that are analogous to the results which are known in the concept of the rational submodule. We used a P-rational submodule to define a P-polyform module which is contained properly in the polyform module. An R-module M is called P-polyform if every es
... Show MoreLet R be a commutative ring with identity 1 ¹ 0, and let M be a unitary left module over R. A submodule N of an R-module M is called essential, if whenever N ⋂ L = (0), then L = (0) for every submodule L of M. In this case, we write N ≤e M. An R-module M is called extending, if every submodule of M is an essential in a direct summand of M. A submodule N of an R-module M is called semi-essential (denoted by N ≤sem M), if N ∩ P ≠ (0) for each nonzero prime submodule P of M. The main purpose of this work is to determine and study two new concepts (up to our knowledge) which are St-closed submodules and semi-extending modules. St-closed submodules is contained properly in the class of closed submodules, where a submodule N of
... Show MoreAbstract Throughout this paper R represents commutative ring with identity and M is a unitary left R-module, the purpose of this paper is to study a new concept, (up to our knowledge), named St-closed submodules. It is stronger than the concept of closed submodules, where a submodule N of an R-module M is called St-closed (briefly N ≤Stc M) in M, if it has no proper semi-essential extensions in M, i.e if there exists a submodule K of M such that N is a semi-essential submodule of K then N = K. An ideal I of R is called St-closed if I is an St-closed R-submodule. Various properties of St-closed submodules are considered.
Gangyong Lee, S. Tariq Rizvi, and Cosmin S. Roman studied Dual Rickart modules. The main purpose of this paper is to define strong dual Rickart module. Let M and N be R- modules , M is called N- strong dual Rickart module (or relatively sd-Rickart to N)which is denoted by M it is N-sd- Rickart if for every submodule A of M and every homomorphism fHom (M , N) , f (A) is a direct summand of N. We prove that for an R- module M , if R is M-sd- Rickart , then every cyclic submodule of M is a direct summand . In particular, if M<
... Show More