Let be a commutative ring with identity and let be an R-module. We call an R-submodule of as P-essential if for each nonzero prime submodule of and 0 . Also, we call an R-module as P-uniform if every non-zero submodule of is P-essential. We give some properties of P-essential and introduce many properties to P-uniform R-module. Also, we give conditions under which a submodule of a multiplication R-module becomes P-essential. Moreover, various properties of P-essential submodules are considered.
As an important resource, entanglement light source has been used in developing quantum information technologies, such as quantum key distribution(QKD). There are few experiments implementing entanglement-based deterministic QKD protocols since the security of existing protocols may be compromised in lossy channels. In this work, we report on a loss-tolerant deterministic QKD experiment which follows a modified “Ping-Pong”(PP) protocol. The experiment results demonstrate for the first time that a secure deterministic QKD session can be fulfilled in a channel with an optical loss of 9 dB, based on a telecom-band entangled photon source. This exhibits a conceivable prospect of ultilizing entanglement light source in real-life fiber-based
... Show MoreThe topic of the research revolves around constructivist theory, which is one of the most important theories that added weight to the theoretical and epistemological field of international relations. The constructivist theory studies international relations from a completely different side of theories by focusing on the social aspects of international relations, and by looking at international relations as social constructs. Ideas, cultures, norms, standards and language play a major role in their formation. The study also examines the state of the war on terrorism as it represents one of the most international cases in which its composition and composition coincide with constructive ideas and a
... Show MoreIn this work, we introduce a new generalization of both Rationally extending and Goldie extending which is Goldie Rationally extending module which is known as follows: if for any submodule K of an R-module M there is a direct summand U of M (denoted by U⊆_⊕ M) such that K β_r U. A β_r is a relation of K⊆M and U⊆M, which defined as K β_r U if and only if K ⋂U⊆_r K and K⋂U⊆_r U.
In this research, we introduce a small essentially quasi−Dedekind R-module to generalize the term of an essentially quasi.−Dedekind R-module. We also give some of the basic properties and a number of examples that illustrate these properties.
In this paper, we introduce a type of modules, namely S-K-nonsingular modules, which is a generalization of K-nonsingular modules. A comprehensive study of these classes of modules is given.
In this paper mildly-regular topological space was introduced via the concept of mildly g-open sets. Many properties of mildly - regular space are investigated and the interactions between mildly-regular space and certain types of topological spaces are considered. Also the concept of strong mildly-regular space was introduced and a main theorem on this space was proved.
Throughout this work we introduce the notion of Annihilator-closed submodules, and we give some basic properties of this concept. We also introduce a generalization for the Extending modules, namely Annihilator-extending modules. Some fundamental properties are presented as well as we discuss the relation between this concept and some other related concepts.
Let R be a commutative ring with identity and M be a unitary R- module. We shall say that M is a primary multiplication module if every primary submodule of M is a multiplication submodule of M. Some of the properties of this concept will be investigated. The main results of this paper are, for modules M and N, we have M N and HomR (M, N) are primary multiplications R-modules under certain assumptions.
Let R be a ring with identity and M is a unitary left R–module. M is called J–lifting module if for every submodule N of M, there exists a submodule K of N such that
Let R be an associative ring with identity and let M be right R-module M is called μ-semi hollow module if every finitely generated submodule of M is μ-small submodule of M The purpose of this paper is to give some properties of μ-semi hollow module. Also, we gives conditions under, which the direct sum of μ-semi hollow modules is μ-semi hollow. An R-module is said has a projective μ-cover if there exists an epimorphism