Preferred Language
Articles
/
ijs-3894
MRI Probabilistic Neural Network Screening System: a benign and malignant recognition case study

This work is aimed to design a system which is able to diagnose two types of tumors in a human brain (benign and malignant), using curvelet transform and probabilistic neural network. Our proposed method follows an approach in which the stages are preprocessing using Gaussian filter, segmentation using fuzzy c-means and feature extraction using curvelet transform. These features are trained and tested the probabilistic neural network. Curvelet transform is to extract the feature of MRI images. The proposed screening technique has successfully detected the brain cancer from MRI images of an almost 100% recognition rate accuracy.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Aug 30 2021
Journal Name
Russian Electronic Journal Of Radiology
Scopus Crossref
View Publication
Publication Date
Tue Nov 01 2022
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Photovoltaic system DC series arc fault: a case study

<p>Photovoltaic (PV) systems are becoming increasingly popular; however, arc faults on the direct current (DC) side are becoming more widespread as a result of the effects of aging as well as the trend toward higher DC voltage levels, posing severe risk to human safety and system stability. The parallel arc faults present higher level of current as compared with the series arc faults, making it more difficult to spot the series arc. In this paper and for the aim of condition monitoring, the features of a DC series arc fault are analyzed by analysing the arc features, performing model’s simulation in PSCAD, and carrying out experimental studies. Various arc models are simulated and investigated; for low current arcs, the heur

... Show More
Scopus (2)
Scopus Crossref
View Publication
Publication Date
Fri Apr 12 2019
Journal Name
Journal Of Economics And Administrative Sciences
Accounting Mining Data Using Neural Networks (Case study)

Business organizations have faced many challenges in recent times, most important of which is information technology, because it is widely spread and easy to use. Its use has led to an increase in the amount of data that business organizations deal with an unprecedented manner. The amount of data available through the internet is a problem that many parties seek to find solutions for. Why is it available there in this huge amount randomly? Many expectations have revealed that in 2017, there will be devices connected to the internet estimated at three times the population of the Earth, and in 2015 more than one and a half billion gigabytes of data was transferred every minute globally. Thus, the so-called data mining emerged as a

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Proceedings Of International Conference On Computing And Communication Networks
Scopus (1)
Scopus Clarivate Crossref
View Publication
Publication Date
Wed Jul 01 2015
Journal Name
Journal Of Engineering
Spiking Neural Network in Precision Agriculture

In this paper, precision agriculture system is introduced based on Wireless Sensor Network (WSN). Soil moisture considered one of environment factors that effect on crop. The period of irrigation must be monitored. Neural network capable of learning the behavior of the agricultural soil in absence of mathematical model. This paper introduced modified type of neural network that is known as Spiking Neural Network (SNN). In this work, the precision agriculture system  is modeled, contains two SNNs which have been identified off-line based on logged data, one of these SNNs represents the monitor that located at sink where the period of irrigation is calculated and the other represents the soil. In addition, to reduce p

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Data Classification using Quantum Neural Network

In this paper, integrated quantum neural network (QNN), which is a class of feedforward

neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
A Proposed Agent System for Network Monitoring

The traditional centralized network management approach presents severe efficiency and scalability limitations in large scale networks. The process of data collection and analysis typically involves huge transfers of management data to the manager which cause considerable network throughput and bottlenecks at the manager side. All these problems processed using the Agent technology as a solution to distribute the management functionality over the network elements. The proposed system consists of the server agent that is working together with clients agents to monitor the logging (off, on) of the clients computers and which user is working on it. file system watcher mechanism is used to indicate any change in files. The results were presente

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Sep 20 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Modified Radial Based Neural Network for Clustering and Routing Optimal Path in Wireless Network

Several methods have been developed for routing problem in MANETs wireless network, because it considered very important problem in this network ,we suggested proposed method based on modified radial basis function networks RBFN and Kmean++ algorithm. The modification in RBFN for routing operation in order to find the optimal path between source and destination in MANETs clusters. Modified Radial Based Neural Network is very simple, adaptable and efficient method to increase the life time of nodes, packet delivery ratio and the throughput of the network will increase and connection become more useful because the optimal path has the best parameters from other paths including the best bitrate and best life link with minimum delays. The re

... Show More
View Publication Preview PDF
Publication Date
Thu Apr 18 2019
Journal Name
Al-kindy College Medical Journal
Demonstration of the value of diffusion weighted MR imaging for differentiation of benign from malignant breast lesions

Background: Radiologic evaluation of breast lesions is being achieved through several imaging modalities. Mammography has an established role in breast cancer screening and diagnosis. Still however, it shows some limitations particulary in dense breast.

Methods : Magnetic resonance imaging is an attractive tool for the diagnosis of breast tumors1 and the use of magnetic resonance imaging of the breast is rapidly increasing as this technique becomes more widely available.1 As an adjunct to mammography and ultrasound, MRI can be a valuable addition to the work-up of a breast abnormality. MRI has the advantages of providing a three-dimensional view of the breast, performing wit

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sat Aug 03 2024
Journal Name
Proceedings Of Ninth International Congress On Information And Communication Technology
Offline Signature Verification Based on Neural Network

The investigation of signature validation is crucial to the field of personal authenticity. The biometrics-based system has been developed to support some information security features.Aperson’s signature, an essential biometric trait of a human being, can be used to verify their identification. In this study, a mechanism for automatically verifying signatures has been suggested. The offline properties of handwritten signatures are highlighted in this study which aims to verify the authenticity of handwritten signatures whether they are real or forged using computer-based machine learning techniques. The main goal of developing such systems is to verify people through the validity of their signatures. In this research, images of a group o

... Show More