Preferred Language
Articles
/
ijs-3894
MRI Probabilistic Neural Network Screening System: a benign and malignant recognition case study

This work is aimed to design a system which is able to diagnose two types of tumors in a human brain (benign and malignant), using curvelet transform and probabilistic neural network. Our proposed method follows an approach in which the stages are preprocessing using Gaussian filter, segmentation using fuzzy c-means and feature extraction using curvelet transform. These features are trained and tested the probabilistic neural network. Curvelet transform is to extract the feature of MRI images. The proposed screening technique has successfully detected the brain cancer from MRI images of an almost 100% recognition rate accuracy.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Performance Assessment of Solar-Transformer-Consumption System Using Neural Network Approach

Solar energy is one of the immeasurable renewable energy in power generation for a green, clean and healthier environment. The silicon-layer solar panels absorb sun energy and converts it into electricity by off-grid inverter. Electricity is transferred either from this inverter or from transformer, consumed by consumption unit(s) available for residential or economic purposes. The artificial neural network is the foundation of artificial intelligence and solves many complex problems which are difficult by statistical methods or by humans. In view of this, the purpose of this work is to assess the performance of the Solar - Transformer - Consumption (STC) system. The system may be in complete breakdown situation due to failure of both so

... Show More
Scopus (5)
Crossref (2)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Engineering
Convolutional Multi-Spike Neural Network as Intelligent System Prediction for Control Systems

The evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Ieee Access
Scopus (18)
Crossref (18)
Scopus Clarivate Crossref
View Publication
Publication Date
Fri Apr 30 2021
Journal Name
Eastern-european Journal Of Enterprise Technologies
Implementation of artificial neural network to achieve speed control and power saving of a belt conveyor system

According to the importance of the conveyor systems in various industrial and service lines, it is very desirable to make these systems as efficient as possible in their work. In this paper, the speed of a conveyor belt (which is in our study a part of an integrated training robotic system) is controlled using one of the artificial intelligence methods, which is the Artificial Neural Network (ANN). A visions sensor will be responsible for gathering information about the status of the conveyor belt and parts over it, where, according to this information, an intelligent decision about the belt speed will be taken by the ANN controller. ANN will control the alteration in speed in a way that gives the optimized energy efficiency through

... Show More
Scopus (12)
Crossref (4)
Scopus Crossref
View Publication
Publication Date
Tue Aug 31 2021
Journal Name
Iraqi Journal Of Science
Application of Neural Network Analysis for Seismic Data to Differentiate Reservoir Units of Yamama Formation in Nasiriya Oilfield A Case Study in Southern Iraq

      The EMERGE application from Hampsson-Russell suite programs was used in the present study. It is an interesting domain for seismic attributes that predict some of reservoir three dimensional or two dimensional properties, as well as their combination. The objective of this study is to differentiate reservoir/non reservoir units with well data in the Yamama Formation by using seismic tools. P-impedance volume (density x velocity of P-wave) was used in this research to  perform a three dimensional seismic model on the oilfield of Nasiriya by using post-stack data of  5 wells. The data (training and application) were utilized in the EMERGE analysis for estimating the reservoir properties of P-wave ve

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Comparison Study of Electromyography Using Wavelet and Neural Network

In this paper we present a method to analyze five types with fifteen wavelet families for eighteen different EMG signals. A comparison study is also given to show performance of various families after modifying the results with back propagation Neural Network. This is actually will help the researchers with the first step of EMG analysis. Huge sets of results (more than 100 sets) are proposed and then classified to be discussed and reach the final.

View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Solid State Technology
Image Fusion Using A Convolutional Neural Network

Image Fusion Using A Convolutional Neural Network

Publication Date
Mon Jun 01 2020
Journal Name
Serbian Journal Of Experimental And Clinical Research
Role of Combining Colour Doppler and Grey Scale Ultrasound in Differentiating Benign from Malignant Ovarian Masses
Abstract<p>The aim of this study was to evaluate ovarian masses with conventional grey scale ultrasonography and colour Doppler flow imaging and to assess the diagnostic reliability of these methods in differentiating benign and malignant ovarian masses.</p><p>We assessed 56 patients with an ovarian mass. Morphological characterisation of the mass was performed utilising the Sassone score. Colour Doppler parameters were recorded for each patient, and the Caruso vascular score was also applied. The results were compared with surgical/pathological and/or follow-up scans.</p><p>Using the Sassone score, overall reliability in differentiating ovaria</p> ... Show More
Scopus (1)
Scopus Crossref
View Publication
Publication Date
Mon Jun 17 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A Study of Positive and Negative Parity States in 114Te nucleus by the Interacting Boson Model .IBM by Neural Network(Back propagation multi-layer neural network) .

Positive and negative parity states for 114Te have been studied applying the vibration al limit U(5) of Interacting boson model (IBM- 1 ) . The present results have shown their good agreement with experimental data in addition to the determination of the spin/parity of new energy levels are not assigned experimentally as the levels 0+2 and 5+1 and the levels 3"1 and 5-1 . Then back propagation multiLayer neural network used for positive and negative parity states for 114Te and shown their membership to the Vibration limit U(5) the network implemented by MATLAB system.

View Publication Preview PDF
Publication Date
Sat Dec 02 2017
Journal Name
Al-khwarizmi Engineering Journal
Human Face Recognition Using Wavelet Network

 

            This paper presents a study of wavelet self-organizing maps (WSOM) for face recognition. The WSOM is a feed forward network that estimates optimized wavelet based for the discrete wavelet transform (DWT) on the basis of the distribution of the input data, where wavelet basis transforms are used as activation function.

 

 

View Publication Preview PDF