In this paper, the reliability of the stress-strength model is derived for probability P(Y<X) of a component having its strength X exposed to one independent stress Y, when X and Y are following Gompertz Fréchet distribution with unknown shape parameters and known parameters . Different methods were used to estimate reliability R and Gompertz Fréchet distribution parameters, which are maximum likelihood, least square, weighted least square, regression, and ranked set sampling. Also, a comparison of these estimators was made by a simulation study based on mean square error (MSE) criteria. The comparison confirms that the performance of the maximum likelihood estimator is better than that of the other estimators.
The stress(Y) – strength(X) model reliability Bayesian estimation which defines life of a component with strength X and stress Y (the component fails if and only if at any time the applied stress is greater than its strength) has been studied, then the reliability; R=P(Y<X), can be considered as a measure of the component performance. In this paper, a Bayesian analysis has been considered for R when the two variables X and Y are independent Weibull random variables with common parameter α in order to study the effect of each of the two different scale parameters β and λ; respectively, using three different [weighted, quadratic and entropy] loss functions under two different prior functions [Gamma and extension of Jeffery
... Show MoreIn this paper, estimation of system reliability of the multi-components in stress-strength model R(s,k) is considered, when the stress and strength are independent random variables and follows the Exponentiated Weibull Distribution (EWD) with known first shape parameter θ and, the second shape parameter α is unknown using different estimation methods. Comparisons among the proposed estimators through Monte Carlo simulation technique were made depend on mean squared error (MSE) criteria
In this paper, we employ the maximum likelihood estimator in addition to the shrinkage estimation procedure to estimate the system reliability (
The reliability of hybrid systems is important in modern technology, specifically in engineering and industrial fields; it is an indicator of the machine's efficiency and ability to operate without interruption for an extended period of time. It also allows for the evaluation of machines and equipment for planning and future development. This study looked at reliability of hybrid (parallel series) systems with asymmetric components using exponential and Pareto distributions. Several simulation experiments were performed to estimate the reliability function of these systems using the Maximum Likelihood method and the Standard Bayes method with a quadratic loss (QL) function and two priors: non-informative (Jeffery) and inform
... Show MoreThis Research Tries To Investigate The Problem Of Estimating The Reliability Of Two Parameter Weibull Distribution,By Using Maximum Likelihood Method, And White Method. The Comparison Is done Through Simulation Process Depending On Three Choices Of Models (?=0.8 , ß=0.9) , (?=1.2 , ß=1.5) and (?=2.5 , ß=2). And Sample Size n=10 , 70, 150 We Use the Statistical Criterion Based On the Mean Square Error (MSE) For Comparison Amongst The Methods.
In this paper, we are mainly concerned with estimating cascade reliability model (2+1) based on inverted exponential distribution and comparing among the estimation methods that are used . The maximum likelihood estimator and uniformly minimum variance unbiased estimators are used to get of the strengths and the stress ;k=1,2,3 respectively then, by using the unbiased estimators, we propose Preliminary test single stage shrinkage (PTSSS) estimator when a prior knowledge is available for the scale parameter as initial value due past experiences . The Mean Squared Error [MSE] for the proposed estimator is derived to compare among the methods. Numerical results about conduct of the considered
... Show MoreIn this paper, an estimate has been made for parameters and the reliability function for Transmuted power function (TPF) distribution through using some estimation methods as proposed new technique for white, percentile, least square, weighted least square and modification moment methods. A simulation was used to generate random data that follow the (TPF) distribution on three experiments (E1 , E2 , E3) of the real values of the parameters, and with sample size (n=10,25,50 and 100) and iteration samples (N=1000), and taking reliability times (0< t < 0) . Comparisons have been made between the obtained results from the estimators using mean square error (MSE). The results showed the
... Show More