In this article, a new class of analytic functions which is defined by terms of a quasi-subordination is introduced. The coefficient estimates, including the classical inequality of functions belonging to this class, are then derived. Also, several special improving results for the associated classes involving the subordination are presented.
We presented in this paper a new class containing analytic univalent functions defined on unit disk. We obtained many geometric properties , like , coefficient inequality , distortion and growth theorems, convolution property, convex set, arithmetic mean and radius of starlikness and convexity by using Gaussian hypergeometric function for the class
According to the theory of regular geometric functions, the relevance of geometry to analysis is a critical feature. One of the significant tools to study operators is to utilize the convolution product. The dynamic techniques of convolution have attracted numerous complex analyses in current research. In this effort, an attempt is made by utilizing the said techniques to study a new linear complex operator connecting an incomplete beta function and a Hurwitz–Lerch zeta function of certain meromorphic functions. Furthermore, we employ a method based on the first-order differential subordination to derive new and better differential complex inequalities, namely differential subordinations.
In the present paper, by making use of the new generalized operator, some results of third order differential subordination and differential superordination consequence for analytic functions are obtained. Also, some sandwich-type theorems are presented.
In the present paper, we will study the generalized ( p, q) -type and
generalized lower ( p, q) -type of an entire function in several complex
variables with respect to the proximate order with index pair ( p, q) are
defined and their coefficient characterizations are obtained.
In the present paper, we will study the generalized ( p, q) -type and
generalized lower ( p, q) -type of an entire function in several complex
variables with respect to the proximate order with index pair ( p, q) are
defined and their coefficient characterizations are obtained.
In this paper, the class of meromorphic multivalent functions of the form by using fractional differ-integral operators is introduced. We get Coefficients estimates, radii of convexity and star likeness. Also closure theorems and distortion theorem for the class , is calculaed.
In this paper we introduce a new type of functions called the generalized regular
continuous functions .These functions are weaker than regular continuous functions and
stronger than regular generalized continuous functions. Also, we study some
characterizations and basic properties of generalized regular continuous functions .Moreover
we study another types of generalized regular continuous functions and study the relation
among them
The main goal of this paper is to introduce the higher derivatives multivalent harmonic function class, which is defined by the general linear operator. As a result, geometric properties such as coefficient estimation, convex combination, extreme point, distortion theorem and convolution property are obtained. Finally, we show that this class is invariant under the Bernandi-Libera-Livingston integral for harmonic functions.
In this article, we introduce and study two new families of analytic functions by using strong differential subordinations and superordinations associated with Wanas differential operator/. We also give and establish some important properties of these families.