Our goal in the present paper is to introduce a new type of fuzzy inner product space. After that, to illustrate this notion, some examples are introduced. Then we prove that that every fuzzy inner product space is a fuzzy normed space. We also prove that the cross product of two fuzzy inner spaces is again a fuzzy inner product space. Next, we prove that the fuzzy inner product is a non decreasing function. Finally, if U is a fuzzy complete fuzzy inner product space and D is a fuzzy closed subspace of U, then we prove that U can be written as a direct sum of D and the fuzzy orthogonal complement of D.
In this paper the definition of fuzzy anti-normed linear spaces and its basic properties are used to prove some properties of a finite dimensional fuzzy anti-normed linear space.
The aim of this paper is to translate the basic properties of the classical complete normed algebra to the complete fuzzy normed algebra at this end a proof of multiplication fuzzy continuous is given. Also a proof of every fuzzy normed algebra without identity can be embedded into fuzzy normed algebra with identity and is an ideal in is given. Moreover the proof of the resolvent set of a non zero element in complete fuzzy normed space is equal to the set of complex numbers is given. Finally basic properties of the resolvent space of a complete fuzzy normed algebra is given.
In this article, we study some properties of anti-fuzzy sub-semigroup, anti fuzzy left (right, two sided) ideal, anti fuzzy ideal, anti fuzzy generalized bi-ideal, anti fuzzy interior ideals and anti fuzzy two sided ideal of regular semigroup. Also, we characterized regular LA-semigroup in terms of their anti fuzzy ideal.
Our goal in the present paper is to recall the concept of general fuzzy normed space and its basic properties in order to define the adjoint operator of a general fuzzy bounded operator from a general fuzzy normed space V into another general fuzzy normed space U. After that basic properties of the adjoint operator were proved then the definition of fuzzy reflexive general fuzzy normed space was introduced in order to prove that every finite dimensional general fuzzy normed space is fuzzy reflexive.
The study of fixed points on the maps fulfilling certain contraction requirements has several applications and has been the focus of numerous research endeavors. On the other hand, as an extension of the idea of the best approximation, the best proximity point (ƁƤƤ) emerges. The best approximation theorem ensures the existence of an approximate solution; the best proximity point theorem is considered for addressing the problem in order to arrive at an optimum approximate solution. This paper introduces a new kind of proximal contraction mapping and establishes the best proximity point theorem for such mapping in fuzzy normed space ( space). In the beginning, the concept of the best proximity point was introduced. The concept of prox
... Show MoreThe best proximity point is a generalization of a fixed point that is beneficial when the contraction map is not a self-map. On other hand, best approximation theorems offer an approximate solution to the fixed point equation . It is used to solve the problem in order to come up with a good approximation. This paper's main purpose is to introduce new types of proximal contraction for nonself mappings in fuzzy normed space and then proved the best proximity point theorem for these mappings. At first, the definition of fuzzy normed space is given. Then the notions of the best proximity point and - proximal admissible in the context of fuzzy normed space are presented. The notion of α ̃–ψ ̃- proximal contractive mapping is introduced.
... Show MoreLet
In the current study, the definition of mapping of fuzzy neutrosophic generalized semi-continuous and fuzzy neutrosophic alpha has generalized mapping as continuous. The study confirmed some theorems regarding such a concept. In the following, it has been found relationships among fuzzy neutrosophic alpha generalized mapping as continuous, fuzzy neutrosophic mapping as continuous, fuzzy neutrosophic alpha mapping as continuous, fuzzy neutrosophic generalized semi mapping as continuous, fuzzy neutrosophic pre mapping as continuous and fuzzy neutrosophic γ mapping as continuous.
In this paper we recall the definition of fuzzy length space on a fuzzy set after that we recall basic definitions and properties of fuzzy length. We define fuzzy bounded operator as an introduction to defined fuzzy length of an operator then we proved that the fuzzy length space FB ̃ ̃ consisting of all fuzzy bounded linear operators from a fuzzy length space ̃ into a fuzzy length space ̃ is fuzzy complete if ̃ is fuzzy complete. Also we proved that every finite dimensional fuzzy length space is fuzzy complete.