Preferred Language
Articles
/
ijs-3215
Meerkat Clan Algorithm for Solving N-Queen Problems
...Show More Authors

The swarm intelligence and evolutionary methods are commonly utilized by researchers in solving the difficult combinatorial and Non-Deterministic Polynomial (NP) problems. The N-Queen problem can be defined as a combinatorial problem that became intractable for the large ‘n’ values and, thereby, it is placed in the NP class of problems. In the present study, a solution is suggested for the N-Queen problem, on the basis of the Meerkat Clan Algorithm (MCA). The problem of n-Queen can be mainly defined as one of the generalized 8-Queen problem forms, for which the aim is placing 8 queens in a way that none of the queens has the ability of killing the others with the use of the standard moves of the chess queen. The Meerkat Clan environment is a directed graph, called the search space, produced for the efficient search of valid n-queens’ placement, in a way that they do not cause harm to one another. This paper also presents the development of an intelligent heuristic function which is helpful to find the solution with high speed and effectiveness. This study includes a detailed discussion of the problem background, problem complexity, Meerkat Clan Algorithm, and comparisons of the problem solution with the Practical Swarm Optimization (PSO) and Genetic Algorithm (GA. It is an entirely review-based work which implemented the suggested designs and architectures of the methods and a fair amount of experimental results.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jul 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A Scoping Review of Machine Learning Techniques and Their Utilisation in Predicting Heart Diseases
...Show More Authors

Heart diseases are diverse, common, and dangerous diseases that affect the heart's function. They appear as a result of genetic factors or unhealthy practices. Furthermore, they are the leading cause of mortalities in the world. Cardiovascular diseases seriously concern the health and activity of the heart by narrowing the arteries and reducing the amount of blood received by the heart, which leads to high blood pressure and high cholesterol. In addition, healthcare workers and physicians need intelligent technologies that help them analyze and predict based on patients’ data for early detection of heart diseases to find the appropriate treatment for them because these diseases appear on the patient without pain or noticeable symptoms,

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Processing of Polymers Stress Relaxation Curves Using Machine Learning Methods
...Show More Authors

Currently, one of the topical areas of application of machine learning methods is the prediction of material characteristics. The aim of this work is to develop machine learning models for determining the rheological properties of polymers from experimental stress relaxation curves. The paper presents an overview of the main directions of metaheuristic approaches (local search, evolutionary algorithms) to solving combinatorial optimization problems. Metaheuristic algorithms for solving some important combinatorial optimization problems are described, with special emphasis on the construction of decision trees. A comparative analysis of algorithms for solving the regression problem in CatBoost Regressor has been carried out. The object of

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Journal Of Economics And Administrative Sciences
The Role of Strategic Intelligence in Organizational Success Analytical research in the colleges of the University of Fallujah
...Show More Authors

The current research aims to verify the role of strategic intelligence as an explanatory variable in organizational success as a respondent variable in the colleges of the University of Fallujah, the research community. (Dean, Associate Dean, Section Head, Division Officer, Unit Officer), The researcher used the questionnaire as the main tool to collect data that included (50) items, in addition to using personal interviews and field observations as aids in data collection. The researcher relied on statistical programs (SPSS V.25; Excel V (16) In the treatment and analysis of data through the use of the most appropriate statistical methods (arithmetic mean, standard deviation, difference coefficient, determinatio

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Baghdad Science Journal
Spectrophotometric Determination of Salbutamol Sulphate and Isoxsuprine Hydrochloride in Pharmaceutical Formulations
...Show More Authors

A simple, sensitive and accurate spectrophotometric method has been developed for the determination of salbutamol sulphate (SAB) and isoxsuprine hydrochloride (ISX) in pure and pharmaceutical dosage. The method involved oxidation of (SAB) and (ISX) with a known excess of N-bromosuccinamid in acidic medium, and subsequent occupation of unreacted oxidant in decolorization of Evans blue dye (EB). This, in the presence of SAB or ISX was rectilinear over the ranges 1.0-12.0, 1.0-11.0 µg/mL, with molar absorptivity 4.21×104 and 2.58×104 l.mol-1.cm-1 respectively. The developed method had been successfully applied for the determination of the studied drugs in their pharmaceutical dosage resulting i

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
Performance Improvement of Generative Adversarial Networks to Generate Digital Color Images of Skin Diseases
...Show More Authors

     The main task of creating new digital images of different skin diseases is to increase the resolution of the specific textures and colors of each skin disease. In this paper, the performance of generative adversarial networks has been optimized to generate multicolor and histological color digital images of a variety of skin diseases (melanoma, birthmarks, and basal cell carcinomas). Two architectures for generative adversarial networks were built using two models: the first is a model for generating new images of dermatology through training processes, and the second is a discrimination model whose main task is to identify the generated digital images as either real or fake. The gray wolf swarm algorithm and the whale swarm alg

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Modeling and Control of Fuel Cell Using Artificial Neural Networks
...Show More Authors

This paper includes an experimental study of hydrogen mass flow rate and inlet hydrogen pressure effect on the fuel cell performance. Depending on the experimental results, a model of fuel cell based on artificial neural networks is proposed. A back propagation learning rule with the log-sigmoid activation function is adopted to construct neural networks model. Experimental data resulting from 36 fuel cell tests are used as a learning data. The hydrogen mass flow rate, applied load and inlet hydrogen pressure are inputs to fuel cell model, while the current and voltage are outputs. Proposed model could successfully predict the fuel cell performance in good agreement with actual data. This work is extended to developed fuel cell feedback

... Show More
View Publication Preview PDF
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
An Artificial Intelligence-based Proactive Network Forensic Framework
...Show More Authors

     is at an all-time high in the modern period, and the majority of the population uses the Internet for all types of communication. It is great to be able to improvise like this. As a result of this trend, hackers have become increasingly focused on attacking the system/network in numerous ways. When a hacker commits a digital crime, it is examined in a reactive manner, which aids in the identification of the perpetrators. However, in the modern period, it is not expected to wait for an attack to occur. The user anticipates being able to predict a cyberattack before it causes damage to the system. This can be accomplished with the assistance of the proactive forensic framework presented in this study. The proposed system combines

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
Modeling Jar Test Results Using Gene Expression to Determine the Optimal Alum Dose in Drinking Water Treatment Plants
...Show More Authors

Coagulation is the most important process in drinking water treatment. Alum coagulant increases the aluminum residuals, which have been linked in many studies to Alzheimer's disease. Therefore, it is very important to use it with the very optimal dose. In this paper, four sets of experiments were done to determine the relationship between raw water characteristics: turbidity, pH, alkalinity, temperature, and optimum doses of alum [   .14 O] to form a mathematical equation that could replace the need for jar test experiments. The experiments were performed under different conditions and under different seasonal circumstances. The optimal dose in every set was determined, and used to build a gene expression model (GEP). The models were co

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Oct 25 2022
Journal Name
Minar Congress 6
HANDWRITTEN DIGITS CLASSIFICATION BASED ON DISCRETE WAVELET TRANSFORM AND SPIKE NEURAL NETWORK
...Show More Authors

In this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database

View Publication Preview PDF
Publication Date
Sun Mar 26 2023
Journal Name
Wasit Journal Of Pure Sciences
Covid-19 Prediction using Machine Learning Methods: An Article Review
...Show More Authors

The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system

... Show More
View Publication Preview PDF
Crossref (2)
Crossref