The swarm intelligence and evolutionary methods are commonly utilized by researchers in solving the difficult combinatorial and Non-Deterministic Polynomial (NP) problems. The N-Queen problem can be defined as a combinatorial problem that became intractable for the large ‘n’ values and, thereby, it is placed in the NP class of problems. In the present study, a solution is suggested for the N-Queen problem, on the basis of the Meerkat Clan Algorithm (MCA). The problem of n-Queen can be mainly defined as one of the generalized 8-Queen problem forms, for which the aim is placing 8 queens in a way that none of the queens has the ability of killing the others with the use of the standard moves of the chess queen. The Meerkat Clan environment is a directed graph, called the search space, produced for the efficient search of valid n-queens’ placement, in a way that they do not cause harm to one another. This paper also presents the development of an intelligent heuristic function which is helpful to find the solution with high speed and effectiveness. This study includes a detailed discussion of the problem background, problem complexity, Meerkat Clan Algorithm, and comparisons of the problem solution with the Practical Swarm Optimization (PSO) and Genetic Algorithm (GA. It is an entirely review-based work which implemented the suggested designs and architectures of the methods and a fair amount of experimental results.
In this research, an unknown space-dependent force function in the wave equation is studied. This is a natural continuation of [1] and chapter 2 of [2] and [3], where the finite difference method (FDM)/boundary element method (BEM), with the separation of variables method, were considered. Additional data are given by the one end displacement measurement. Moreover, it is a continuation of [3], with exchanging the boundary condition, where are extra data, by the initial condition. This is an ill-posed inverse force problem for linear hyperbolic equation. Therefore, in order to stabilize the solution, a zeroth-order Tikhonov regularization method is provided. To assess the accuracy, the minimum error between
... Show MoreThe approximate solution of a nonlinear parabolic boundary value problem with variable coefficients (NLPBVPVC) is found by using mixed Galekin finite element method (GFEM) in space variable with Crank Nicolson (C-N) scheme in time variable. The problem is reduced to solve a Galerkin nonlinear algebraic system (NLAS), which is solved by applying the predictor and the corrector method (PCM), which transforms the NLAS into a Galerkin linear algebraic system (LAS). This LAS is solved once using the Cholesky technique (CHT) as it appears in the MATLAB package and once again using the General Cholesky Reduction Order Technique (GCHROT), the GCHROT is employed here at first time to play an important role for saving a massive time. Illustrative
... Show MoreThe focus of this paper is the presentation of a new type of mapping called projection Jungck zn- Suzuki generalized and also defining new algorithms of various types (one-step and two-step algorithms) (projection Jungck-normal N algorithm, projection Jungck-Picard algorithm, projection Jungck-Krasnoselskii algorithm, and projection Jungck-Thianwan algorithm). The convergence of these algorithms has been studied, and it was discovered that they all converge to a fixed point. Furthermore, using the previous three conditions for the lemma, we demonstrated that the difference between any two sequences is zero. These algorithms' stability was demonstrated using projection Jungck Suzuki generalized mapping. In contrast, the rate of convergenc
... Show MoreThe dynamic development of computer and software technology in recent years was accompanied by the expansion and widespread implementation of artificial intelligence (AI) based methods in many aspects of human life. A prominent field where rapid progress was observed are high‐throughput methods in biology that generate big amounts of data that need to be processed and analyzed. Therefore, AI methods are more and more applied in the biomedical field, among others for RNA‐protein binding sites prediction, DNA sequence function prediction, protein‐protein interaction prediction, or biomedical image classification. Stem cells are widely used in biomedical research, e.g., leukemia or other disease studies. Our proposed approach of
... Show MoreThe problem of reconstruction of a timewise dependent coefficient and free boundary at once in a nonlocal diffusion equation under Stefan and heat Flux as nonlocal overdetermination conditions have been considered. A Crank–Nicolson finite difference method (FDM) combined with the trapezoidal rule quadrature is used for the direct problem. While the inverse problem is reformulated as a nonlinear regularized least-square optimization problem with simple bound and solved efficiently by MATLAB subroutine lsqnonlin from the optimization toolbox. Since the problem under investigation is generally ill-posed, a small error in the input data leads to a huge error in the output, then Tikhonov’s regularization technique is app
... Show MoreTo improve the efficiency of a processor in recent multiprocessor systems to deal with data, cache memories are used to access data instead of main memory which reduces the latency of delay time. In such systems, when installing different caches in different processors in shared memory architecture, the difficulties appear when there is a need to maintain consistency between the cache memories of different processors. So, cache coherency protocol is very important in such kinds of system. MSI, MESI, MOSI, MOESI, etc. are the famous protocols to solve cache coherency problem. We have proposed in this research integrating two states of MESI's cache coherence protocol which are Exclusive and Modified, which responds to a request from reading
... Show MoreThe utilization of artificial intelligence techniques has garnered significant interest in recent research due to their pivotal role in enhancing the quality of educational offerings. This study investigated the impact of employing artificial intelligence techniques on improving the quality of educational services, as perceived by students enrolled in the College of Pharmacy at the University of Baghdad. The study sample comprised 379 male and female students. A descriptive-analytical approach was used, with a questionnaire as the primary tool for data collection. The findings indicated that the application of artificial intelligence methods was highly effective, and the educational services provided to students were of exceptional quality.
... Show MoreMulti-document summarization is an optimization problem demanding optimization of more than one objective function simultaneously. The proposed work regards balancing of the two significant objectives: content coverage and diversity when generating summaries from a collection of text documents.
Any automatic text summarization system has the challenge of producing high quality summary. Despite the existing efforts on designing and evaluating the performance of many text summarization techniques, their formulations lack the introduction of any model that can give an explicit representation of – coverage and diversity – the two contradictory semantics of any summary. In this work, the design of
... Show MoreDrilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.
In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation
... Show MoreDrilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.
In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation
... Show More