The swarm intelligence and evolutionary methods are commonly utilized by researchers in solving the difficult combinatorial and Non-Deterministic Polynomial (NP) problems. The N-Queen problem can be defined as a combinatorial problem that became intractable for the large ‘n’ values and, thereby, it is placed in the NP class of problems. In the present study, a solution is suggested for the N-Queen problem, on the basis of the Meerkat Clan Algorithm (MCA). The problem of n-Queen can be mainly defined as one of the generalized 8-Queen problem forms, for which the aim is placing 8 queens in a way that none of the queens has the ability of killing the others with the use of the standard moves of the chess queen. The Meerkat Clan environment is a directed graph, called the search space, produced for the efficient search of valid n-queens’ placement, in a way that they do not cause harm to one another. This paper also presents the development of an intelligent heuristic function which is helpful to find the solution with high speed and effectiveness. This study includes a detailed discussion of the problem background, problem complexity, Meerkat Clan Algorithm, and comparisons of the problem solution with the Practical Swarm Optimization (PSO) and Genetic Algorithm (GA. It is an entirely review-based work which implemented the suggested designs and architectures of the methods and a fair amount of experimental results.
This paper demonstrates a new technique based on a combined form of the new transform method with homotopy perturbation method to find the suitable accurate solution of autonomous Equations with initial condition. This technique is called the transform homotopy perturbation method (THPM). It can be used to solve the problems without resorting to the frequency domain.The implementation of the suggested method demonstrates the usefulness in finding exact solution for linear and nonlinear problems. The practical results show the efficiency and reliability of technique and easier implemented than HPM in finding exact solutions.Finally, all algorithms in this paper implemented in MATLAB version 7.12.
In this paper, one of the Machine Scheduling Problems is studied, which is the problem of scheduling a number of products (n-jobs) on one (single) machine with the multi-criteria objective function. These functions are (completion time, the tardiness, the earliness, and the late work) which formulated as . The branch and bound (BAB) method are used as the main method for solving the problem, where four upper bounds and one lower bound are proposed and a number of dominance rules are considered to reduce the number of branches in the search tree. The genetic algorithm (GA) and the particle swarm optimization (PSO) are used to obtain two of the upper bounds. The computational results are calculated by coding (progr
... Show More
Abstract
The use of modern scientific methods and techniques, is considered important topics to solve many of the problems which face some sector, including industrial, service and health. The researcher always intends to use modern methods characterized by accuracy, clarity and speed to reach the optimal solution and be easy at the same time in terms of understanding and application.
the research presented this comparison between the two methods of solution for linear fractional programming models which are linear transformation for Charnas & Cooper , and denominator function restriction method through applied on the oil heaters and gas cookers plant , where the show after reac
... Show More This paper studies the existence of positive solutions for the following boundary value problem :-
y(b) 0 α y(a) - β y(a) 0 bta f(y) g(t) λy    ï‚¢ï€
The solution procedure follows using the Fixed point theorem and obtains that this problem has at least one positive solution .Also,it determines ( ï¬ ) Eigenvalue which would be needed to find the positive solution .
The aim of this paper is to propose an efficient three steps iterative method for finding the zeros of the nonlinear equation f(x)=0 . Starting with a suitably chosen , the method generates a sequence of iterates converging to the root. The convergence analysis is proved to establish its five order of convergence. Several examples are given to illustrate the efficiency of the proposed new method and its comparison with other methods.
Clustering is an unsupervised learning method that classified data according to similarity probabilities. DBScan as a high-quality algorithm has been introduced for clustering spatial data due to its ability to remove noise (outlier) and constructing arbitrarily shapes. However, it has a problem in determining a suitable value of Eps parameter. This paper proposes a new clustering method, termed as DBScanBAT, that it optimizes DBScan algorithm by BAT algorithm. The proposed method automatically sets the DBScan parameters (Eps) and finds the optimal value for it. The results of the proposed DBScanBAT automatically generates near original number of clusters better than DBScanPSO and original DBScan. Furthermore, the proposed method
... Show MoreIn this paper we will investigate some Heuristic methods to solve travelling salesman problem. The discussed methods are Minimizing Distance Method (MDM), Branch and Bound Method (BABM), Tree Type Heuristic Method (TTHM) and Greedy Method (GRM).
The weak points of MDM are manipulated in this paper. The Improved MDM (IMDM) gives better results than classical MDM, and other discussed methods, while the GRM gives best time for 5≤ n ≤500, where n is the number of visited cities.
Science, technology and many other fields are use clustering algorithm widely for many applications, this paper presents a new hybrid algorithm called KDBSCAN that work on improving k-mean algorithm and solve two of its
problems, the first problem is number of cluster, when it`s must be entered by user, this problem solved by using DBSCAN algorithm for estimating number of cluster, and the second problem is randomly initial centroid problem that has been dealt with by choosing the centroid in steady method and removing randomly choosing for a better results, this work used DUC 2002 dataset to obtain the results of KDBSCAN algorithm, it`s work in many application fields such as electronics libraries,