Suicidal ideation is one of the severe mental health issues and a serious social problem faced by our society. This problem has been usually dealt with through the psychological point of view, using clinical face to face settings. There are various risk factors associated with suicides, including social isolation, anxiety, depression, etc., that decrease the threshold for suicide. The COVID-19 pandemic further increases social isolation, posing a great threat to the human population. Posting suicidal thoughts on social media is gaining much attention due to the social stigma associated with the mental health. Online Social Networks (OSN) are increasingly used to express the suicidal thoughts. Recently, a top Indian actor industry took the harsh step of suicide. The last Instagram posts revealed signs of depression, which if anticipated could have saved the precious life. Recent research indicated that the public information on social media provides valuable insights on detecting the users with the suicidal ideation. The motive of this study is to provide a systematic review of the work done already in the use of social media for suicide prevention and propose a novel classification approach that classifies the suicide related tweets/ posts into three levels of distress. Moreover, our proposed classification task which was implemented through various machine learning techniques revealed high accuracy in classifying the suicidal posts. Among all algorithms, the best performing algorithm was that of the decision tree, with an F1 score ranging 0.95-0.97. After thoroughly studying the work achieved by different researchers in the area of suicide prevention, our study critically analyses those works and finds various research gaps and solves some of them. We believe that our work will motivate research community to look into other gaps that will in turn help psychiatrists, psychologists, and counsellors to protect individuals suffering from suicidal ideation.
In this paper, the bi-criteria machine scheduling problems (BMSP) are solved, where the discussed problem is represented by the sum of completion and the sum of late work times simultaneously. In order to solve the suggested BMSP, some metaheurisitc methods are suggested which produce good results. The suggested local search methods are simulated annulling and bees algorithm. The results of the new metaheurisitc methods are compared with the complete enumeration method, which is considered an exact method, then compared results of the heuristics with each other to obtain the most efficient method.
In this study, performance characteristics such as power take off (PTO) power consumption, fuel consumption, fuel consumption for the unit field-unit product were determined at different working speeds with two different PTO applications (540 and 540E) in a single row disc type silage machine. In particular, the 540E PTO application greatly reduces fuel consumption for unit work. The best results in terms of hourly fuel consumption were achieved in 540E PTO application and V1 working speed. When the field - product fuel consumption is evaluated, the best results were obtained with the 540E PTO application at the V3 working speed. When an evaluation is made considering all the parameters, it is concluded that the 540E PTO application will p
... Show MoreLung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c
... Show MoreIn this paper, our aim is to solve analytically a nonlinear social epidemic model as an initial value problem (IVP) of ordinary differential equations. The mathematical social epidemic model under study is applied to alcohol consumption model in Spain. The economic cost of alcohol consumption in Spain is affected by the amount of alcohol consumed. This paper refers to the study of alcohol consumption using some analytical methods. Adomian decomposition and variation iteration methods for solving alcohol consumption model have used. Finally, a compression between the analytic solutions of the two used methods and the previous actual values from 1997 to 2007 years is obtained using the absolute and
... Show MoreBackground: Autism is a complex developmental disability that typically appears during the first three years of life. Autism affects the normal development of the brain in the areas of social interaction and communication skills.Objectives: To identify risk factors for Autism among a sample of autistic children in Baghdad city. Type of the study: this is a case – control, study. Methods: This study was conducted during the period of data collection extended from first of November 2010 until the first of April 2011,The total number of children involved was 100children with diagnosis of autism. Handred children who are free from autism were taken as the control sample. Results: there was a significant association between paternal age and
... Show MoreThe research deals with a very important topic, which is social security viewed in the context of criminal protection for state security and the challenges it faces after a decisive change in the methods of war. The research also presents a different division of the generations of wars. We limit ourselves to four of them based on the change in the strategic war objectives and not just the means of committing them. This is because these means are not suitable for describing the real changes in the patterns of wars and the goals that it seeks to achieve. The research stresses the importance of putting the concept of state security in its correct framework, which is part of social security, so that the interest of the political system and the
... Show MoreResearch deals the crises of the global recession of the facets of different and calls for the need to think out of the ordinary theory and find the arguments of the theory to accommodate the evolution of life, globalization and technological change and the standard of living of individuals and the size of the disparity in income distribution is not on the national level, but also at the global level as well, without paying attention to the potential resistance for thought the usual classical, Where the greater the returns of factors of production, the consumption will increase, and that the marginal propensity to consume may rise and the rise at rates greater with slices of low-income (the mouths of the poor) wi
... Show MoreThe study area of Baghdad region and nearby areas lies within the central part of the Mesopotamia plain. It covers about 5700 Km2. The remote sensing techniques are used in order to produce possible Land Use – Land Cover (LULC) map for Baghdad region and nearby areas depending on Landsat TM satellite image 2007. The classification procedure which was developed by USGS used and followed with field checking in 2010. Land Use-land cover digital map is created depending on maximum likelihood classifications (ML) of TM image using ERDAS 9.2.The LULC raster image is converted to vector structure, using Arc GIS 9.3 Program in order to create a digital LULC map. This study showed it is possible to produce a digital map of LULC and it can be co
... Show MoreAdverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD
... Show MoreThis paper presents results about the existence of best approximations via nonexpansive type maps defined on modular spaces.