Suicidal ideation is one of the severe mental health issues and a serious social problem faced by our society. This problem has been usually dealt with through the psychological point of view, using clinical face to face settings. There are various risk factors associated with suicides, including social isolation, anxiety, depression, etc., that decrease the threshold for suicide. The COVID-19 pandemic further increases social isolation, posing a great threat to the human population. Posting suicidal thoughts on social media is gaining much attention due to the social stigma associated with the mental health. Online Social Networks (OSN) are increasingly used to express the suicidal thoughts. Recently, a top Indian actor industry took the harsh step of suicide. The last Instagram posts revealed signs of depression, which if anticipated could have saved the precious life. Recent research indicated that the public information on social media provides valuable insights on detecting the users with the suicidal ideation. The motive of this study is to provide a systematic review of the work done already in the use of social media for suicide prevention and propose a novel classification approach that classifies the suicide related tweets/ posts into three levels of distress. Moreover, our proposed classification task which was implemented through various machine learning techniques revealed high accuracy in classifying the suicidal posts. Among all algorithms, the best performing algorithm was that of the decision tree, with an F1 score ranging 0.95-0.97. After thoroughly studying the work achieved by different researchers in the area of suicide prevention, our study critically analyses those works and finds various research gaps and solves some of them. We believe that our work will motivate research community to look into other gaps that will in turn help psychiatrists, psychologists, and counsellors to protect individuals suffering from suicidal ideation.
Crime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based o
The huge amount of documents in the internet led to the rapid need of text classification (TC). TC is used to organize these text documents. In this research paper, a new model is based on Extreme Machine learning (EML) is used. The proposed model consists of many phases including: preprocessing, feature extraction, Multiple Linear Regression (MLR) and ELM. The basic idea of the proposed model is built upon the calculation of feature weights by using MLR. These feature weights with the extracted features introduced as an input to the ELM that produced weighted Extreme Learning Machine (WELM). The results showed a great competence of the proposed WELM compared to the ELM.
Sentiment Analysis is a research field that studies human opinion, sentiment, evaluation, and emotions towards entities such as products, services, organizations, events, topics, and their attributes. It is also a task of natural language processing. However, sentiment analysis research has mainly been carried out for the English language. Although the Arabic language is one of the most used languages on the Internet, only a few studies have focused on Arabic language sentiment analysis.
In this paper, a review of the most important research works in the field of Arabic text sentiment analysis using deep learning algorithms is presented. This review illustrates the main steps used in these studies, which include
... Show MoreDistributed Denial of Service (DDoS) attacks on Web-based services have grown in both number and sophistication with the rise of advanced wireless technology and modern computing paradigms. Detecting these attacks in the sea of communication packets is very important. There were a lot of DDoS attacks that were directed at the network and transport layers at first. During the past few years, attackers have changed their strategies to try to get into the application layer. The application layer attacks could be more harmful and stealthier because the attack traffic and the normal traffic flows cannot be told apart. Distributed attacks are hard to fight because they can affect real computing resources as well as network bandwidth. DDoS attacks
... Show MoreGetting knowledge from raw data has delivered beneficial information in several domains. The prevalent utilizing of social media produced extraordinary quantities of social information. Simply, social media delivers an available podium for employers for sharing information. Data Mining has ability to present applicable designs that can be useful for employers, commercial, and customers. Data of social media are strident, massive, formless, and dynamic in the natural case, so modern encounters grow. Investigation methods of data mining utilized via social networks is the purpose of the study, accepting investigation plans on the basis of criteria, and by selecting a number of papers to serve as the foundation for this arti
... Show MoreMedia theories and studies have provided many diligences on the concept of social media and the circle of influence, including the theory of social marketing which deals with how to promote ideas espoused by the elite in a society to become a recognized social value. The emergence of social networks provided a revolutionary breakthrough, taking the media to unprecedented horizons; and giving its users great opportunities to influence and move across borders without restrictions and censorship, except in a relatively limited manner.
So, the emergence of social media has created channels of live broadcasting from its audience in a method of development that changes the essence of the known communication theories; a
... Show MoreMedia theories and studies have provided many diligences on the concept of social media and the circle of influence, including the theory of social marketing which deals with how to promote ideas espoused by the elite in a society to become a recognized social value. The emergence of social networks provided a revolutionary breakthrough, taking the media to unprecedented horizons; and giving its users great opportunities to influence and move across borders without restrictions and censorship, except in a relatively limited manner. So, the emergence of social media has created channels of live broadcasting from its audience in a method of development that changes the essence of the known communication theories; and stops the monopoly of th
... Show MoreCurrently, one of the topical areas of application of machine learning methods is the prediction of material characteristics. The aim of this work is to develop machine learning models for determining the rheological properties of polymers from experimental stress relaxation curves. The paper presents an overview of the main directions of metaheuristic approaches (local search, evolutionary algorithms) to solving combinatorial optimization problems. Metaheuristic algorithms for solving some important combinatorial optimization problems are described, with special emphasis on the construction of decision trees. A comparative analysis of algorithms for solving the regression problem in CatBoost Regressor has been carried out. The object of
... Show MoreLately, a growing interest has been emerging in age estimation from face images because of the wide range of potential implementations in law enforcement, security control, and human computer interactions. Nevertheless, in spite of the advances in age estimation, it is still a challenging issue. This is due to the fact that face aging process is not only set by distinct elements, such as genetic factors, but by extrinsic factors, such as lifestyle, expressions, and environment as well. This paper applied machine learning technique to intelligent age estimation from facial images using J48 classifier on FG_NET dataset. The proposed work consists of three phases; the first phase is image preprocessing which include
... Show More.