Preferred Language
Articles
/
ijs-2777
F-µ-Semiregular Modules

Let  R be an associative ring with identity and let M be a left R-module . As a generalization of µ-semiregular modules, we introduce an F-µ-semiregular module. Let F be a submodule of M and x∊M. x is called F-µ-semiregular element in M , if there exists a decomposition M=A⨁B, such that A is a projective submodule of  and . M is called  F-µ-semiregular if x is F-µ-semiregular element for each x∊M. A condition under which the module µ-semiregular is F-µ-semiregular module was given. The basic properties and some characterizations of the F-µ-semiregular module were provided.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri May 01 2020
Journal Name
Journal Of Physics: Conference Series
On µ-Semiregular Module
Abstract<p>Let R be an associative ring with identity and let M be right R-module M is called μ-semi hollow module if every finitely generated submodule of M is μ-small submodule of M The purpose of this paper is to give some properties of μ-semi hollow module. Also, we gives conditions under, which the direct sum of μ-semi hollow modules is μ-semi hollow. An R-module is said has a projective μ-cover if there exists an epimorphism <italic>f</italic>:P→M Where P is a projective R-module and ker (<italic>f</italic>)<sub>≪</sub> P.And study some properties of Projective μ-cover of M. Were studied Moreover, An module M is μ-semiregular module if every cyclic</p> ... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Thu Feb 28 2019
Journal Name
Iraqi Journal Of Science
On µ-lifting Modules

Let R be a ring with identity and let M be a left R-module. M is called µ-lifting modulei f for every sub module A of M, There exists a direct summand D of M such that M = D D', for some sub module D' of M such that AD and A D'<<µ D'. The aim of this paper is to introduce properties of µ-lifting modules. Especially, we give characterizations of µ-lifting modules. On the other hand, the notion of amply µ-supplemented iis studied as a generalization of amply supplemented modules, we show that if M is amply µ-supplemented such that every µ-supplement sub module of M

... Show More
View Publication Preview PDF
Publication Date
Fri Dec 30 2022
Journal Name
Iraqi Journal Of Science
F-Approximately Regular Modules

We introduce in this paper the concept of an approximately pure submodule as a     generalization of a pure submodule, that is defined by Anderson and Fuller. If every submodule of an R-module  is approximately pure, then  is called F-approximately regular. Further, many results about this concept are given.

View Publication Preview PDF
Crossref (1)
Scopus Crossref
Publication Date
Wed May 25 2022
Journal Name
Iraqi Journal Of Science
F-J-semi Regular Modules

      Let  be a ring with identity and let  be a left R-module. If is  a proper submodule of  and  ,  is called --semi regular element in  , If there exists a decoposition  such that  is projective submodule of  and  . The aim of this paper is to introduce properties of F-J-semi regular module. In particular, its characterizations are given. Furthermore, we introduce the concepts of Jacobson hollow semi regular module and --semiregular module. Finally, many results of Jacobson hollow semi regular module and --semiregular module are presented.

View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Mar 02 2014
Journal Name
Baghdad Science Journal
On Strongly F – Regular Modules and Strongly Pure Intersection Property

A submoduleA of amodule M is said to be strongly pure , if for each finite subset {ai} in A , (equivalently, for each a ?A) there exists ahomomorphism f : M ?A such that f(ai) = ai, ?i(f(a)=a).A module M is said to be strongly F–regular if each submodule of M is strongly pure .The main purpose of this paper is to develop the properties of strongly F–regular modules and study modules with the property that the intersection of any two strongly pure submodules is strongly pure .

View Publication Preview PDF
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Iraqi Journal Of Science,
F-J-semi Regular Modules Department

Publication Date
Mon Apr 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
δ-Hollow Modules

    Let R be a commutative ring with unity and M be a non zero unitary left R-module. M is called a hollow module if every proper submodule N of M is small (N ≪ M), i.e. N + W ≠ M for every proper submodule W in M. A δ-hollow module is a generalization of hollow module, where an R-module M is called δ-hollow module if every proper submodule N of M is δ-small (N δ  M), i.e. N + W ≠ M for every proper submodule W in M with M W is singular. In this work we study this class of modules and give several fundamental properties related with this concept

View Publication Preview PDF
Publication Date
Fri Oct 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Semi-Small Compressible Modules and Semi-Small Retractable Modules

Let  be a commutative ring with 1 and  be left unitary  . In this paper we introduced and studied concept of semi-small compressible module (a     is said to be semi-small compressible module if  can be embedded in every nonzero semi-small submodule of . Equivalently,  is  semi-small compressible module if there exists a monomorphism  , ,     is said to be semi-small retractable module if  , for every non-zero  semi-small sub module in . Equivalently,  is semi-small retractable if there exists a homomorphism  whenever  .

    In this paper we introduce and study the concept of semi-small compressible and semi-small retractable s as a generalization of compressible  and retractable  respectively and give some of

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Apr 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Small Monoform Modules

 Let R be a commutative ring with unity, let M be a left R-module. In this paper we introduce the concept small monoform module as a generalization of monoform module. A module M is called small monoform if for each non zero submodule N of M and for each   f ∈ Hom(N,M), f ≠ 0 implies ker f is small submodule in N. We give the fundamental properties of small monoform modules. Also we present some relationships between small monoform modules and some related modules

View Publication Preview PDF
Publication Date
Tue Feb 13 2024
Journal Name
Iraqi Journal Of Science
Coregular Modules

In this paper we study the concepts of copure submodules and coregular
modules. Many results related with these concepts are obtained.

View Publication Preview PDF