Preferred Language
Articles
/
ijs-2659
The Continuous Classical Boundary Optimal Control of Triple Nonlinear Elliptic Partial Differential Equations with State Constraints

    Our aim in this work is to study the classical continuous boundary control vector  problem for triple nonlinear partial differential equations of elliptic type involving a Neumann boundary control. At first, we prove that the triple nonlinear partial differential equations of elliptic type with a given classical continuous boundary control vector have a unique "state" solution vector,  by using the Minty-Browder Theorem. In addition, we prove the existence of a classical continuous boundary optimal control vector ruled by the triple nonlinear partial differential equations of elliptic type with equality and inequality constraints. We study the existence of the unique solution for the triple adjoint equations related with the triple state equations.

The Fréchet derivative is obtained. Finally we prove the theorems of both the necessary and sufficient conditions for optimality of the triple nonlinear partial differential equations of elliptic type through the Kuhn-Tucker-Lagrange's Multipliers theorem with equality and inequality constraints.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Mar 06 2016
Journal Name
Baghdad Science Journal
Indirect Method for Optimal Control Problem Using Boubaker Polynomial

In this paper, a computational method for solving optimal problem is presented, using indirect method (spectral methodtechnique) which is based on Boubaker polynomial. By this method the state and the adjoint variables are approximated by Boubaker polynomial with unknown coefficients, thus an optimal control problem is transformed to algebraic equations which can be solved easily, and then the numerical value of the performance index is obtained. Also the operational matrices of differentiation and integration have been deduced for the same polynomial to help solving the problems easier. A numerical example was given to show the applicability and efficiency of the method. Some characteristics of this polynomial which can be used for solvin

... Show More
Crossref (3)
Crossref
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Arab Journal Of Basic And Applied Sciences
Crossref (2)
Crossref
View Publication
Publication Date
Wed Feb 01 2023
Journal Name
Baghdad Science Journal
Efficient Approach for Solving (2+1) D- Differential Equations

     In this article, a new efficient approach is presented to solve a type of partial differential equations, such (2+1)-dimensional differential equations non-linear, and nonhomogeneous. The procedure of the new approach is suggested to solve important types of differential equations and get accurate analytic solutions i.e., exact solutions. The effectiveness of the suggested approach based on its properties compared with other approaches has been used to solve this type of differential equations such as the Adomain decomposition method, homotopy perturbation method, homotopy analysis method, and variation iteration method. The advantage of the present method has been illustrated by some examples.

Scopus (6)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Wed Jul 24 2024
Journal Name
An International Journal Of Optimization And Control: Theories & Applications (ijocta)
The effect of a psychological scare on the dynamics of the tumor-immune interaction with optimal control strategy

Contracting cancer typically induces a state of terror among the individuals who are affected. Exploring how chemotherapy and anxiety work together to affect the speed at which cancer cells multiply and the immune system’s response model is necessary to come up with ways to stop the spread of cancer. This paper proposes a mathematical model to investigate the impact of psychological scare and chemotherapy on the interaction of cancer and immunity. The proposed model is accurately described. The focus of the model’s dynamic analysis is to identify the potential equilibrium locations. According to the analysis, it is possible to establish three equilibrium positions. The stability analysis reveals that all equilibrium points consi

... Show More
Scopus Crossref
View Publication
Publication Date
Fri Jan 26 2024
Journal Name
Iraqi Journal Of Science
Proving The Existence and the Uniqueness Solutions of fractional Integro- Differential Equations

In this paper, we will study and prove the existence and the uniqueness theorems
of solutions of the generalized linear integro-differential equations with unequal
fractional order of differentiation and integration by using Schauder fixed point
theorem. This type of fractional integro-differential equation may be considered as a
generalization to the other types of fractional integro-differential equations
Considered by other researchers, as well as, to the usual integro-differential
equations.

View Publication Preview PDF
Publication Date
Sat Oct 30 2021
Journal Name
Iraqi Journal Of Science
Qualitative Analysis of some Types of Neutral Delay Differential Equations

     In this paper, we conduct some qualitative analysis that involves the global asymptotic stability (GAS) of the Neutral Differential Equation (NDE) with variable delay, by using  Banach contraction mapping theorem, to give some necessary conditions to achieve the GAS of the zero solution.

Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Jan 01 2015
Journal Name
Journal Of The College Of Basic Education
Efficient Modifications of the Adomian Decomposition Method for Thirteenth Order Ordinary Differential Equations

This paper deals with the thirteenth order differential equations linear and nonlinear in boundary value problems by using the Modified Adomian Decomposition Method (MADM), the analytical results of the equations have been obtained in terms of convergent series with easily computable components. Two numerical examples results show that this method is a promising and powerful tool for solving this problems.

View Publication
Publication Date
Wed Jun 27 2018
Journal Name
Iraqi Journal Of Science
Generalized Spline Method for Integro-Differential Equations of Fractional Order

In This paper generalized spline method and Caputo differential operator is applied to solve linear fractional integro-differential equations of the second kind. Comparison of the applied method with exact solutions reveals that the method is tremendously effective.

View Publication Preview PDF
Publication Date
Mon Sep 23 2019
Journal Name
Baghdad Science Journal
New Approach for Solving Three Dimensional Space Partial Differential Equation

This paper presents a new transform method to solve partial differential equations, for finding suitable accurate solutions in a wider domain. It can be used to solve the problems without resorting to the frequency domain. The new transform is combined with the homotopy perturbation method in order to solve three dimensional second order partial differential equations with initial condition, and the convergence of the solution to the exact form is proved. The implementation of the suggested method demonstrates the usefulness in finding exact solutions. The practical implications show the effectiveness of approach and it is easily implemented in finding exact solutions.

       Finally, all algori

... Show More
Scopus (21)
Crossref (10)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Mon Apr 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solving Linear Boundary Value Problem Using Shooting Continuous Explicit Runge-Kutta Method

  In this paper we shall generalize fifth explicit Runge-Kutta Feldberg(ERKF(5)) and Continuous explicit Runge-Kutta (CERK) method using shooting method to solve second order boundary value problem  which can be reduced to order one.These methods we shall call them as shooting Continuous Explicit Runge-Kutta method, the results are computed using matlab program.

View Publication Preview PDF