The diseases presence in various species of fruits are the crucial parameter of economic composition and degradation of the cultivation industry around the world. The proposed pear fruit disease identification neural network (PFDINN) frame-work to identify three types of pear diseases was presented in this work. The major phases of the presented frame-work were as the following: (1) the infected area in the pear fruit was detected by using the algorithm of K-means clustering. (2) hybrid statistical features were computed over the segmented pear image and combined to form one descriptor. (3) Feed forward neural network (FFNN), which depends on three learning algorithms of back propagation (BP) training, namely Scaled conjugate gradient (SCG-BP), Resilient (R-BP) and Bayesian regularization (BR-BP), was used in the identification process. Pear fruit was taken as the experiment case during this work with three classifications of diseases, namely fire blight, pear scab, and sooty blotch, as compared to healthy pears. PFDINN framework was trained and tested using 2D pear fruit images collected from the Fruit Crops Diseases Database (FCDD). The presented framework achieved 94.6%, 97.3%, and 96.3% efficiency for SCG-BP, R-BP, and BR-BP, respectively. An accuracy value of 100% was achieved when the R-BP learning algorithm was trained for identification.
A quantitative description of microstructure governs the characteristics of the material. Various heat and excellent treatments reveal micro-structures when the material is prepared. Depending on the microstructure, mechanical properties like hardness, ductility, strength, toughness, corrosion resistance, etc., also vary. Microstructures are characterized by morphological features like volume fraction of different phases, particle size, etc. Relative volume fractions of the phases must be known to correlate with the mechanical properties. In this work, using image processing techniques, an automated scheme was presented to calculate relative volume fractions of the phases, namely Ferrite, Martensite, and Bainite, present in the
... Show MoreNonlinear regression models are important tools for solving optimization problems. As traditional techniques would fail to reach satisfactory solutions for the parameter estimation problem. Hence, in this paper, the BAT algorithm to estimate the parameters of Nonlinear Regression models is used . The simulation study is considered to investigate the performance of the proposed algorithm with the maximum likelihood (MLE) and Least square (LS) methods. The results show that the Bat algorithm provides accurate estimation and it is satisfactory for the parameter estimation of the nonlinear regression models than MLE and LS methods depend on Mean Square error.
Software-defined networking (SDN) presents novel security and privacy risks, including distributed denial-of-service (DDoS) attacks. In response to these threats, machine learning (ML) and deep learning (DL) have emerged as effective approaches for quickly identifying and mitigating anomalies. To this end, this research employs various classification methods, including support vector machines (SVMs), K-nearest neighbors (KNNs), decision trees (DTs), multiple layer perceptron (MLP), and convolutional neural networks (CNNs), and compares their performance. CNN exhibits the highest train accuracy at 97.808%, yet the lowest prediction accuracy at 90.08%. In contrast, SVM demonstrates the highest prediction accuracy of 95.5%. As such, an
... Show MoreAn Experimental comparison between the current-voltage
characteristic and the efficiency conversion from solar to electric energy were studied for square and circular single crystal silicon solar
cell of equal area (35.28 cm2) . The results show that the solar shape is
an important factor in calculating the current-voltage characteristics and efficiency of the solar cell. It was shown that the performance effici
... Show MoreIn this paper, we derived an estimator of reliability function for Laplace distribution with two parameters using Bayes method with square error loss function, Jeffery’s formula and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived Bayesian estimator compared to the maximum likelihood of this function and moment method using simulation technique by Monte Carlo method under different Laplace distribution parameters and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator and moment estimator in all samples sizes
AbstractBackground:Reduced glomeular filtration rate isassociated with increasedmorbidity in patientswith coronary arterydisease.Objectives :To analyze the declining eGFR andmortality risks in a patients with Chronic KidneyDisease and have had Coronary Artery Diseaseincluding risk factors .Patientsand Methods:The study included (160)patientsbetween the ages of 16 and 87years.Glomerular filtration rate was estimated (eGFR)using the Modification of Diet in Renal Diseaseequationand was categorized in the ranges<60 mL· min−1 per 1.73 m2and≥ 60 ml/min/1.73 m2.Baseline risk factors were analyzed by category ofeGFR,.The studied patients in emergencydepartment, were investigatedusing Coxproportional hazard models adjusting for traditiona
... Show MoreIn this paper we reported the microfabrication of three-dimensional structures using two-photon polymerization (2PP) in a mixture of MEH-PPV and an acrylic resin. Femtosecond laser operating at 800nm was employed for the two-photon polymerization processes. As a first step in this project we obtained the better composition in order to fabricate microstructers of MEH-PPV in the resin via two-photon polymerzation. Acknowledgement:This research is support by Mazur Group, Harvrad Universirt.
This review will focus on protein and peptide separation studies of the period 1995 to 2010. Peptide and protein analysis have developed dramatically after applying mass spectrometry (MS) technology and other related techniques, such as two-dimensional liquid chromatography and two-dimensional gel electrophoresis. Mass spectrometry involves measurements of mass-to-charge ratios of the ionized sample. High-performance liquid chromatography (HPLC) is an important technique that is usually applied before MS is conducted due to its efficient separation. Characterization of proteins provides a foundation for the fundamental understanding of biology aspects. In this review, instrumentation, principle, applications, developments, and accuracy o
... Show MoreThirty six bacteria were isolated from various sourcesc (soil, starch, cooked rice and other foods) and subjected to a series of primary screening tests to obtain the optimal isolation to production of amylase. The volume of producing zone by logal indicator for (Seven) isolates of the secondary screening by measuring the enzymatic activity and specific enzymatic activity. The isolate A4 was found to be the most efficient for production of amylase. Then this isolate was diagnosed through microscopic, vitek 2 system technique. in addition by gentic diagnesis through gene 16s of the genes nitrogen bases by use the polymerase chain reaction (PCR) which reached 1256 bases. In comparison to the available information at the National Center for
... Show More