Preferred Language
Articles
/
ijs-2357
On y-closed Dual Rickart Modules

In this paper, we develop the work of Ghawi on close dual Rickart modules and discuss y-closed dual Rickart modules with some properties. Then, we prove that, if are y-closed simple -modues and if -y-closed is a dual Rickart module, then either Hom ( ) =0 or . Also, we study the direct sum of y-closed dual Rickart modules.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jan 01 2010
Journal Name
Iraqi Journal Of Science
PRIME HOLLOW MODULES

A non-zero module M is called hollow, if every proper submodule of M is small. In this work we introduce a generalization of this type of modules; we call it prime hollow modules. Some main properties of this kind of modules are investigated and the relation between these modules with hollow modules and some other modules are studied, such as semihollow, amply supplemented and lifting modules.

View Publication Preview PDF
Publication Date
Wed Jun 26 2019
Journal Name
Iraqi Journal Of Science
Essentially Second Modules

In this paper, as generalization of second modules we introduce type of modules namely (essentially second modules). A comprehensive study of this class of modules is given, also many results concerned with this type and other related modules presented.

Scopus (3)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Dec 19 2021
Journal Name
Iraqi Journal Of Science
Strongly Coretractable Modules

Let R be a ring with identity and M be a right unitary R-module. In this paper we
introduce the notion of strongly coretractable modules. Some basic properties of this
class of modules are investigated and some relationships between these modules and
other related concepts are introduced. 

View Publication Preview PDF
Publication Date
Wed Feb 08 2023
Journal Name
Iraqi Journal Of Science
Strongly Cancellation Modules

Let M be an R-module. We introduce in this paper the concept of strongly cancellation module as a generalization of cancellation modules. We give some characterizations about this concept, and some basic properties. We study the direct sum and the localization of this kind of modules. Also we prove that every module over a PID is strongly module and we prove every locally strong module is strongly module.

View Publication Preview PDF
Publication Date
Wed Apr 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Loc-hollow Fuzzy Modules with Related Modules

     The concept of a small f- subm was presented in a previous study. This work introduced a concept of a hollow f- module, where a module is said to be hollow fuzzy when every subm of it is a small f- subm. Some new types of hollow modules are provided namely, Loc- hollow f- modules as a strength of the hollow module, where every Loc- hollow f- module is a hollow module, but the converse is not true. Many properties and characterizations of these concepts are proved, also the relationship between all these types is researched. Many important results that explain this relationship are demonstrated also several characterizations and properties related to these concepts are given.

Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Fri Mar 29 2024
Journal Name
Iraqi Journal Of Science
Pure-Hollow Modules and Pure-Lifting Modules

   Let  be a commutative ring with identity, and  be a unitary left R-module. In this paper we, introduce and study a new class of modules called pure hollow (Pr-hollow) and pure-lifting (Pr-lifting). We give a fundamental, properties of these concept.  also, we, introduce some conditions under which the quotient and direct sum of Pr-lifting modules is Pr-lifting.

Scopus Crossref
Publication Date
Sun Mar 19 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
2-Regular Modules

  In this paper we introduced the concept of 2-pure submodules as a generalization of pure submodules, we study some of its basic properties and by using this concept we define the class of 2-regular modules, where an R-module M is called 2-regular module if every submodule is 2-pure submodule. Many results about this concept are given. 

View Publication Preview PDF
Publication Date
Mon Apr 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
δ-Hollow Modules

    Let R be a commutative ring with unity and M be a non zero unitary left R-module. M is called a hollow module if every proper submodule N of M is small (N ≪ M), i.e. N + W ≠ M for every proper submodule W in M. A δ-hollow module is a generalization of hollow module, where an R-module M is called δ-hollow module if every proper submodule N of M is δ-small (N δ  M), i.e. N + W ≠ M for every proper submodule W in M with M W is singular. In this work we study this class of modules and give several fundamental properties related with this concept

View Publication Preview PDF
Publication Date
Fri Jul 01 2022
Journal Name
Iraqi Journal Of Science
Molecular Analysis of Y Chromosome Microdeletions in Oligozoospermic Iraqi Patients

This study was designed to determine the correlation between Y chromosome azoospermia factor (AZF) subregions microdeletions and oligozoospermia in infertile men. Subjects included 50 infertile men with oligozoospermia who had been referred to the Fertility Center and infertility treatment in Kamal Al-Samarrai Hospital\Baghdad health office-Iraq. DNA was extracted from blood samples. Polymerase chain reaction (PCR) amplification of 3 loci spanning the AZFa, AZFb and AZFc subregions of the Y chromosome using sY84, sY127 and sY254 and were performed. The frequency of deletions involving AZFa subregion of the Y-chromosome was found in twelve of the patients (24%) in oligozoospermic infertile Iraqi men. While the other subregion (AZFb and AZ

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Orthogonal Derivations and Orthogonal Generalized Derivations on - Modules

Let M be ,-ring and X be ,M-module, Bresar and Vukman studied orthogonal
derivations on semiprime rings. Ashraf and Jamal defined the orthogonal derivations
on -rings M. This research defines and studies the concepts of orthogonal
derivation and orthogonal generalized derivations on ,M -Module X and introduces
the relation between the products of generalized derivations and orthogonality on
,M -module.

View Publication Preview PDF