Preferred Language
Articles
/
ijs-772
Essentially Second Modules
...Show More Authors

In this paper, as generalization of second modules we introduce type of modules namely (essentially second modules). A comprehensive study of this class of modules is given, also many results concerned with this type and other related modules presented.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Semi-Essentially Compressible Modules and Semi-Essentially Retractable Modules
...Show More Authors

Let  be a commutative ring with 1 and  be a left unitary . In this paper, the generalizations for the notions of compressible module and  retractable module are given.

An   is termed to be  semi-essentially compressible if   can be embedded in every of a non-zero semi-essential submodules. An  is termed a semi-essentially retractable module, if   for every non-zero semi-essentially submodule of an . Some of their advantages characterizations and examples are given.  We also study the relation between these classes and some other classes of modules.

View Publication Preview PDF
Scopus Crossref
Publication Date
Mon May 15 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Essentially Quasi-Invertible Submodules and Essentially Quasi-Dedekind Modules
...Show More Authors

        Let R be a commutative ring with  identity . In this paper  we study  the concepts of  essentially quasi-invertible submodules and essentially  quasi-Dedekind modules  as  a generalization of  quasi-invertible submodules and quasi-Dedekind  modules  . Among the results that we obtain is the following : M  is an essentially  quasi-Dedekind  module if and only if M is aK-nonsingular module,where a module M is K-nonsingular if, for each  , Kerf ≤e M   implies   f = 0 .

View Publication Preview PDF
Publication Date
Thu May 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Strongly Essentially Quasi-Dedekind Modules
...Show More Authors

  Let R be a commutative ring with unity. In this paper we introduce and study the concept of strongly essentially quasi-Dedekind module as a generalization of essentially quasiDedekind module. A unitary R-module M is called a strongly essentially quasi-Dedekind module if ( , ) 0 Hom M N M for all semiessential submodules N of M. Where a submodule N  of  an R-module  M  is called semiessential if , 0  pN for all nonzero prime submodules  P of  M .
 

View Publication Preview PDF
Publication Date
Wed Aug 30 2023
Journal Name
Iraqi Journal Of Science
S-Essentially Compressible Modulesand S-Essentially Retractable Modules
...Show More Authors

     Let R be a commutative ring with 1 and M be a left unitary R-module. In this paper, we give a generalization for the notions of compressible (retractable) Modules. We study s-essentially compressible (s-essentially retractable). We give some of their advantages, properties, characterizations and examples. We also study the relation between s-essentially compressible   (s-essentially retractable modules) and some classes of modules.

View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Jul 31 2022
Journal Name
Iraqi Journal Of Science
Small-Essentially Quasi-Dedekind R-Modules
...Show More Authors

In this research, we introduce a small essentially quasi−Dedekind R-module to generalize the term of an essentially quasi.−Dedekind R-module. We also give some of the basic properties and a number of examples that illustrate these properties.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
T-Essentially Coretractable and Weakly T-Essentially Coretractable Modules
...Show More Authors

        A new generalizations of coretractable modules are introduced where a module  is called t-essentially (weakly t-essentially) coretractable if for all proper submodule  of , there exists f End( ), f( )=0 and Imf tes  (Im f + tes ). Some basic properties are studied and many relationships between these classes and other related one are presented.

View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Wed Mar 27 2019
Journal Name
Iraqi Journal Of Science
Essential Second Modules
...Show More Authors

M is viewed as a right module over an arbitrary ring R with identity. The essential second modules is defined in this paper. We call M is essential second when for any a bilongs to R, either Ma = 0 or Ma <e M. Number of conclusions are gained and some connections between these modules and other related modules are studied.

View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Discrete Mathematical Sciences And Cryptography
Semi-essentially prime modules
...Show More Authors

Let R be a commutative ring with 1 and M be a (left) unitary R – module. This essay gives generalizations for the notions prime module and some concepts related to it. We termed an R – module M as semi-essentially prime if annR (M) = annR (N) for every non-zero semi-essential submodules N of M. Given some of their advantages characterizations and examples, and we study the relation between these and some classes of modules.

Scopus Clarivate Crossref
Publication Date
Sun May 17 2020
Journal Name
Iraqi Journal Of Science
Relationship of Essentially Small Quasi-Dedekind Modules with Scalar and Multiplication Modules
...Show More Authors

Let be a ring with 1 and D is a left module over . In this paper, we study the relationship between essentially small quasi-Dedekind modules with scalar and multiplication modules. We show that if D is a scalar small quasi-prime -module, thus D is an essentially small quasi-Dedekind -module. We also show that if D is a faithful multiplication -module, then D is an essentially small prime -module iff is an essentially small quasi-Dedekind ring.

View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Mar 01 2022
Journal Name
Full Text Book Of Minar Congress4
RELATIONSHIP OF ESSENTIALLY SEMISMALL QUASI-DEDEKIND MODULES WITH SCALAR AND MULTIPLICATION MODULES
...Show More Authors

Let R be a ring with 1 and W is a left Module over R. A Submodule D of an R-Module W is small in W(D ≪ W) if whenever a Submodule V of W s.t W = D + V then V = W. A proper Submodule Y of an R-Module W is semismall in W(Y ≪_S W) if Y = 0 or Y/F ≪ W/F ∀ nonzero Submodules F of Y. A Submodule U of an R-Module E is essentially semismall(U ≪es E), if for every non zero semismall Submodule V of E, V∩U ≠ 0. An R-Module E is essentially semismall quasi-Dedekind(ESSQD) if Hom(E/W, E) = 0 ∀ W ≪es E. A ring R is ESSQD if R is an ESSQD R-Module. An R-Module E is a scalar R-Module if, ∀ , ∃ s.t V(e) = ze ∀ . In this paper, we study the relationship between ESSQD Modules with scalar and multiplication Modules. We show that

... Show More
View Publication
Crossref