In this work, the dynamic behavior of discrete models is analyzed with Beverton- Holt function growth . All equilibria are found . The existence and local stability are investigated of all its equilibria.. The optimal harvest strategy is done for the system by using Pontryagin’s maximum principle to solve the optimality problem. Finally numerical simulations are used to solve the optimality problem and to enhance the results of mathematical analysis
A modified Leslie-Gower predator-prey model with fear effect and nonlinear harvesting is developed and investigated in this study. The predator is supposed to feed on the prey using Holling type-II functional response. The goal is to see how fear of predation and presence of harvesting affect the model's dynamics. The system's positivity and boundlessness are demonstrated. All conceivable equilibria's existence and stability requirements are established. All sorts of local bifurcation occurrence conditions are presented. Extensive numerical simulations of the proposed model are shown in form of Phase portraits and direction fields. That is to guarantee the correctness of the theoretical results of the dynamic behavior of the system and t
... Show MoreThe aims of this paper is investigating the spread of AIDS both within-host, through the contact between healthy cells with free virus inside the body, and between-host, through sexual contact among individuals and external sources of infectious. The outbreak of AIDS is described by a mathematical model consisting of two stages. The first stage describes the within-host spread of AIDS and is represented by the first three equations. While the second stage describes the between-host spread of AIDS and represented by the last four equations. The existence, uniqueness and boundedness of the solution of the model are discussed and all possible equilibrium points are determined. The local asymptotic stability (LAS) of the model is studied, wh
... Show MoreThe survival analysis is one of the modern methods of analysis that is based on the fact that the dependent variable represents time until the event concerned in the study. There are many survival models that deal with the impact of explanatory factors on the likelihood of survival, including the models proposed by the world, David Cox, one of the most important and common models of survival, where it consists of two functions, one of which is a parametric function that does not depend on the survival time and the other a nonparametric function that depends on times of survival, which the Cox model is defined as a semi parametric model, The set of parametric models that depend on the time-to-event distribution parameters such as
... Show MoreThe interplay of predation, competition between species and harvesting is one of the most critical aspects of the environment. This paper involves exploring the dynamics of four species' interactions. The system includes two competitive prey and two predators; the first prey is preyed on by the first predator, with the former representing an additional food source for the latter. While the second prey is not exposed to predation but rather is exposed to the harvest. The existence of possible equilibria is found. Conditions of local and global stability for the equilibria are derived. To corroborate our findings, we constructed time series to illustrate the existence and the stability of equilibria numerically by varying the different values
... Show MoreDistribution of light intensity in the flat photobioreactor for microalgae cultivation as a step design for production of bio-renewable energy was addressed in the current study. Five sizes of bioreactors with specific distances from the main light source were adopted as independent variables in experiential design model. The results showed that the bioreactor’s location according to the light source, determines the nature of light intensity distribution in the reactor body. However, the cross-section area plays an important role in determining the suitable location of reactor to achieve required light homogeneity. This area could change even the expected response of the light passing through the reactor if Beer-Lambert's law is adopted.
... Show MoreIn this paper, game theory was used and applied to the transport sector in Iraq, as this sector includes two axes, the public transport axis and the second axis the private transport axis, as each of these axes includes several types of transport, namely (sea transport, air transport, land transport, transport by rail, port transport) and the travel and tourism sector, as public transport lacks this sector, as the competitive advantage matrix for the transport sector was formed and after applying the MinMax-MaxMin principle to the matrix in all its stages, it was found that there was an equilibrium point except for the last stage where the equilibrium point was not available Therefore, the use of the linear programming method was
... Show MoreThis work aims to analyze a three-dimensional discrete-time biological system, a prey-predator model with a constant harvesting amount. The stage structure lies in the predator species. This analysis is done by finding all possible equilibria and investigating their stability. In order to get an optimal harvesting strategy, we suppose that harvesting is to be a non-constant rate. Finally, numerical simulations are given to confirm the outcome of mathematical analysis.