Preferred Language
Articles
/
ijs-2195
Relationship of Essentially Small Quasi-Dedekind Modules with Scalar and Multiplication Modules

Let be a ring with 1 and D is a left module over . In this paper, we study the relationship between essentially small quasi-Dedekind modules with scalar and multiplication modules. We show that if D is a scalar small quasi-prime -module, thus D is an essentially small quasi-Dedekind -module. We also show that if D is a faithful multiplication -module, then D is an essentially small prime -module iff is an essentially small quasi-Dedekind ring.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Nov 28 2020
Journal Name
Iraqi Journal Of Science
Strongly Hollow R - Annihilator Lifting Modules and Strongly R - Annihilator (Hollow- Lifting) Modules

Let R be a commutative ring with unity. Let W be an R-module, for K≤F, where F is a submodule of W and K is said to be R-annihilator coessential submodule of F in W (briefly R-a-coessential) if  (denoted by K  F in W). An R-module W is called strongly hollow -R-annihilator -lifting module (briefly, strongly hollow-R-a-lifting), if for every submodule F of W with  hollow, there exists a fully invariant direct summand K of W such that K  F in W. An R - module W is called strongly R - annihilator - ( hollow - lifting ) module ( briefly strongly R - a - ( hollow - lifting ) module ), if for every submodule F of W with   R - a - hollow, there exists a fully invariant direct summand K o

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Apr 30 2021
Journal Name
Iraqi Journal Of Science
F-µ-Semiregular Modules

Let  R be an associative ring with identity and let M be a left R-module . As a generalization of µ-semiregular modules, we introduce an F-µ-semiregular module. Let F be a submodule of M and x∊M. x is called F-µ-semiregular element in M , if there exists a decomposition M=A⨁B, such that A is a projective submodule of  and . M is called  F-µ-semiregular if x is F-µ-semiregular element for each x∊M. A condition under which the module µ-semiregular is F-µ-semiregular module was given. The basic properties and some characterizations of the F-µ-semiregular module were provided.

Scopus Crossref
View Publication Preview PDF
Publication Date
Mon May 22 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Chained fuzzy modules

        Let R be a commutative ring with unity. In this paper we introduce the notion of chained fuzzy modules as a generalization of chained modules. We investigate several characterizations and properties of this concept

View Publication Preview PDF
Publication Date
Tue May 30 2023
Journal Name
Iraqi Journal Of Science
2-Prime Modules

      In this paper, we introduce the notion of a 2-prime module as a generalization of prime module E over a ring R, where E is said to be prime module if (0) is a prime submodule. We introduced the concept of the 2-prime R-module. Module E is said to be 2-prime if (0) is 2-prime submodule of E. where a proper submodule K of module E is 2-prime submodule if, whenever rR, xE, E, Thus xK or [K: E].

Scopus Crossref
View Publication Preview PDF
Publication Date
Sun May 01 2022
Journal Name
Journal Of Physics: Conference Series
Scopus
Publication Date
Tue Jan 01 2002
Journal Name
Iraqi Journal Of Science
Special selfgenerator Modules

Let R be a commutative ring with identity, and let M be a unitary left R-module. M is called special selfgenerator or weak multiplication module if for each cyclic submodule Ra of M (equivalently, for each submodule N of M) there exists a family {fi} of endomorphism of M such that Ra = ∑_i▒f_i (M) (equivalently N = ∑_i▒f_i (M)). In this paper we introduce a class of modules properly contained in selfgenerator modules called special selfgenerator modules, and we study some of properties of these modules.

Preview PDF
Publication Date
Tue Jan 01 2002
Journal Name
Iraqi Journal Of Science
On Regular Modules

Let R be a commutative ring with identity, and let M be a unitary left R-module. M is called Z-regular if every cyclic submodule (equivalently every finitely generated) is projective and direct summand. And a module M is F-regular if every submodule of M is pure. In this paper we study a class of modules lies between Z-regular and F-regular module, we call these modules regular modules.

Preview PDF
Publication Date
Fri May 01 2020
Journal Name
Journal Of Physics: Conference Series
Scopus (1)
Scopus
Publication Date
Mon Mar 01 2021
Journal Name
Journal Of Physics: Conference Series
Publication Date
Thu Dec 29 2016
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Fuzzy Distributive Modules

  Let R be a commutative ring with unity. In this paper we introduce and study fuzzy distributive modules and fuzzy arithmetical rings as generalizations of (ordinary) distributive modules and arithmetical ring. We give some basic properties about these concepts.  

View Publication Preview PDF