Preferred Language
Articles
/
ijs-2133
Numerical Solutions for the Optimal Control Governing by Variable Coefficients Nonlinear Hyperbolic Boundary Value Problem Using the Gradient Projection, Gradient and Frank Wolfe Methods

This paper is concerned with studying the numerical solution for the discrete classical optimal control problem (NSDCOCP) governed by a variable coefficients nonlinear hyperbolic boundary value problem (VCNLHBVP). The DSCOCP is solved by using the Galerkin finite element method (GFEM) for the space variable and implicit finite difference scheme (GFEM-IFDS) for the time variable to get the NS for the discrete weak form (DWF) and for the discrete adjoint weak form (DSAWF) While, the gradient projection method (GRPM), also called the gradient method (GRM), or the Frank Wolfe method (FRM) are used to minimize the discrete cost function (DCF) to find the DSCOC. Within these three methods, the Armijo step option (ARMSO) or the optimal step option (OPSO) are used to improve the discrete classical control (DSCC). Finally, some illustrative examples for the problem are given to show the accuracy and efficiency of the methods.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Apr 21 2023
Journal Name
Aip Conference Proceedings
Efficient computational methods for solving the nonlinear initial and boundary value problems

In this paper, three approximate methods namely the Bernoulli, the Bernstein, and the shifted Legendre polynomials operational matrices are presented to solve two important nonlinear ordinary differential equations that appeared in engineering and applied science. The Riccati and the Darcy-Brinkman-Forchheimer moment equations are solved and the approximate solutions are obtained. The methods are summarized by converting the nonlinear differential equations into a nonlinear system of algebraic equations that is solved using Mathematica®12. The efficiency of these methods was investigated by calculating the root mean square error (RMS) and the maximum error remainder (𝑀𝐸𝑅n) and it was found that the accuracy increases with increasi

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Oct 01 2012
Journal Name
Computers & Mathematics With Applications
Crossref (19)
Crossref
View Publication
Publication Date
Mon Apr 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Solution of Nonlinear Singular Boundary Value Problem

    This paper is devoted to the analysis of nonlinear singular boundary value problems for ordinary differential equations with a singularity of the different kind. We propose semi - analytic technique using two point osculatory interpolation to construct polynomial solution, and discussion behavior of the solution in the neighborhood of the singular points and its numerical approximation. Two examples are presented to demonstrate the applicability and efficiency of the methods. Finally, we discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems.

View Publication Preview PDF
Publication Date
Wed Aug 31 2022
Journal Name
Iraqi Journal Of Science
Solving Nonlinear Boundary Value Problem Arising of Natural Convection Porous Fin By Using the Haar Wavelet Collocation Method and Temimi and Ansari Method

      In this article, the boundary value problem of convection propagation through the permeable fin in a natural convection environment is solved by the Haar wavelet collocation method (HWCM). We also compare the solutions with the application of a semi-analytical method , namely the Temimi and Ansari (TAM), that is characterized by accuracy and efficiency.The proposed method is also characterized by simplicity and efficiency. The possibility of applying the proposed method to many types of  linear or nonlinear ordinary and partial differential equations.

Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Oct 30 2023
Journal Name
Iraqi Journal Of Science
New Class of Conjugate Gradient Methods for Removing Impulse Noise Images

The conjugate coefficient optimal is the very establishment of a variety of  conjugate gradient methods. This paper proposes a new class coefficient of conjugate gradient (CG) methods for impulse noise removal, which is based on the quadratic model. Our proposed method ensures descent independent of the accuracy of the line search and it is globally convergent under some conditions, Numerical experiments are also presented for the impulse noise removal in images.

Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Dec 05 2022
Journal Name
Baghdad Science Journal
An Asymptotic Analysis of the Gradient Remediability Problem for Disturbed Distributed Linear Systems

The goal of this work is demonstrating, through the gradient observation of a   of type linear ( -systems), the possibility for reducing the effect of any disturbances (pollution, radiation, infection, etc.) asymptotically, by a suitable choice of related actuators of these systems. Thus, a class of  ( -system) was developed based on finite time  ( -system). Furthermore, definitions and some properties of this concept -system and asymptotically gradient controllable system ( -controllable) were stated and studied. More precisely, asymptotically gradient efficient actuators ensuring the weak asymptotically gradient compensation system ( -system) of known or unknown disturbances are examined. Consequently, under convenient hypo

... Show More
Scopus (5)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Mar 06 2016
Journal Name
Baghdad Science Journal
Indirect Method for Optimal Control Problem Using Boubaker Polynomial

In this paper, a computational method for solving optimal problem is presented, using indirect method (spectral methodtechnique) which is based on Boubaker polynomial. By this method the state and the adjoint variables are approximated by Boubaker polynomial with unknown coefficients, thus an optimal control problem is transformed to algebraic equations which can be solved easily, and then the numerical value of the performance index is obtained. Also the operational matrices of differentiation and integration have been deduced for the same polynomial to help solving the problems easier. A numerical example was given to show the applicability and efficiency of the method. Some characteristics of this polynomial which can be used for solvin

... Show More
Crossref (3)
Crossref
View Publication Preview PDF
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
Optimal Control Problem To Robust Nonlinear Descriptor control Systems with Matching Condition

Abstract

    In this paper, the solutions to class of robust non-linear semi-explicit descriptor control systems with matching condition via optimal control strategy are obtained. The optimal control strategy  has been introduced and  developed in the sense that, the optimal control  solution is robust solution to the given non-linear uncertain semi-explicit descriptor control system. The necessary mathematical proofs and remarks as well as  discussions are also proposed. The present approach is step-by-step illustrated by application example to show its effectiveness a and efficiency to compensate  the structure uncertainty in the given semi-explicit (descriptor) control

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Jun 24 2022
Journal Name
Iraqi Journal Of Science
The Continuous Classical Optimal Control of a Couple Nonlinear Hyperbolic Partial Differential Equations with Equality and Inequality Constraints

This paper is concerned with the existence of a unique state vector solution of a couple nonlinear hyperbolic equations using the Galerkin method when the continuous classical control vector is given, the existence theorem of a continuous classical optimal control vector with equality and inequality vector state constraints is proved, the existence of a unique solution of the adjoint equations associated with the state equations is studied. The Frcéhet derivative of the Hamiltonian is obtained. Finally the theorems of the necessary conditions and the sufficient conditions of optimality of the constrained problem are proved.

View Publication Preview PDF
Publication Date
Tue Jan 30 2024
Journal Name
Iraqi Journal Of Science
Boundary Exponential Gradient Reduced Order Detectability in Neumann Conditions

     This work, aims to study and examine the description f the gradient reduced order-strategic sensors of type boundary exponential (-strategic sensors) for completion gradient  order-detectability of type boundary exponential (-detectability). Thus, this concept is linked to an estimator in distributed parameter systems (DPSS) in Neumann problem. So,we present numerous consequences regarding to diverse kinds of information, region  and conditions of boundary region to allow existence of -detectable systems. In addition,we have estimated at the junction interface that the interior solution isharmonizedwith the exterior solution for -detectable and, we give the relationship between this concept and sensors structures. F

... Show More
Scopus (2)
Scopus Crossref
View Publication Preview PDF