Let R be a commutative ring with unity. Let W be an R-module, for K≤F, where F is a submodule of W and K is said to be R-annihilator coessential submodule of F in W (briefly R-a-coessential) if (denoted by K F in W). An R-module W is called strongly hollow -R-annihilator -lifting module (briefly, strongly hollow-R-a-lifting), if for every submodule F of W with hollow, there exists a fully invariant direct summand K of W such that K F in W. An R - module W is called strongly R - annihilator - ( hollow - lifting ) module ( briefly strongly R - a - ( hollow - lifting ) module ), if for every submodule F of W with R - a - hollow, there exists a fully invariant direct summand K of W such that K F in W.
The objective of this study was to investigate the release profile of different fat and water soluble bases using diazepam as a model drug , and then to develop a satisfactory formula with a rapid release of diazepam from suppository bases .The study was conducted using theobroma oil ,glycerol-gelatin and glycerol-PEG1540 bases using conventional mold method for preparation .while the later base was utilized to incorporate diazepam ( buffered solution ) in a hollow type suppositories. The results indicated that all types of bases can be utilized to formulate diazepam as rectal suppositories with acceptable disintegration time ( 12, 10, 6, and 6min.), respectively . While 100% of the released drug had been shown differen
... Show MoreBiaxial hollow slab is a reinforced concrete slab system with a grid of internal spherical voids included to reduce the self-weight. This paper presents an experimental study of behavior of one-way prestressed concrete bubbled slabs. Twelve full-scale one-way concrete slabs of (3000mm) length with rectangular cross-sectional area of (460mm) width and (150mm) depth. Different parameters like type of specimen (solid or bubbled slabs), type of reinforcement (normal or prestress), range of PPR and diameter of plastic spheres (100 or 120mm) are considered. Due to the using of prestressing force in bubbled slabs (with ratio of plastic sphere diameter D to slab thickness H, D/H=0.67), the specimens showed an increase in ultimat
... Show MoreThe purpose of this article is to partition PG(3,11) into orbits. These orbits are studied from the view of caps using the subgroups of PGL(4,11) which are determined by nontrivial positive divisors of the order of PG(3,11). The τ_i-distribution and c_i-distribution are also founded for each cap.
he concept of small monoform module was introduced by Hadi and Marhun, where a module U is called small monoform if for each non-zero submodule V of U and for every non-zero homomorphism f ∈ Hom R (V, U), implies that ker f is small submodule of V. In this paper the author dualizes this concept; she calls it co-small monoform module. Many fundamental properties of co-small monoform module are given. Partial characterization of co-small monoform module is established. Also, the author dualizes the concept of small quasi-Dedekind modules which given by Hadi and Ghawi. She show that co-small monoform is contained properly in the class of the dual of small quasi-Dedekind modules. Furthermore, some subclasses of co-small monoform are investiga
... Show MoreIn this paper, we introduce the concept of e-small Projective modules as a generlization of Projective modules.
In this work, we introduce a new generalization of both Rationally extending and Goldie extending which is Goldie Rationally extending module which is known as follows: if for any submodule K of an R-module M there is a direct summand U of M (denoted by U⊆_⊕ M) such that K β_r U. A β_r is a relation of K⊆M and U⊆M, which defined as K β_r U if and only if K ⋂U⊆_r K and K⋂U⊆_r U.
Let R be a commutative ring with 1 and M be a (left) unitary R – module. This essay gives generalizations for the notions prime module and some concepts related to it. We termed an R – module M as semi-essentially prime if annR (M) = annR (N) for every non-zero semi-essential submodules N of M. Given some of their advantages characterizations and examples, and we study the relation between these and some classes of modules.
Let