Since 1980s, the study of the extending module in the module theory has been a major area of research interest in the ring theory and it has been studied recently by several authors, among them N.V. Dung, D.V. Huyn, P.F. Smith and R. Wisbauer. Because the act theory signifies a generalization of the module theory, the author studied in 2017 the class of extending acts which are referred to as a generalization of quasi-injective acts. The importance of the extending acts motivated us to study a dual of this concept, named the coextending act. An S-act MS is referred to as coextending act if every coclosed subact of Ms is a retract of MS where a subact AS of MS is said to be coclosed in MS if whenever the Rees factor â„ is small in the Rees factor â„then AS=BS for each subact BS of AS. Various properties of this class of acts have been examined. Characterization of this concept is intended to show the behavior of a coextending property. In addition, based on the results obtained by us, the conditions under which subacts inherit a coextending property were demonstrated. Ultimately, a part of this paper
News headlines are key elements in spreading news. They are unique texts written in a special language which enables readers understand the overall nature and importance of the topic. However, this special language causes difficulty for readers in understanding the headline. To illuminate this difficulty, it is argued that a pragmatic analysis from a speech act theory perspective is a plausible tool for a headline analysis. The main objective of the study is to pragmatically analyze the most frequently employed types of speech acts in the news headlines covering COVID-19 in Aljazeera English website. To this end, Bach and Harnish's (1979) Taxonomy of Speech Acts has been adopted to analyze the data. Thirty headlines have been collected f
... Show MoreThe relation between faithful, finitely generated, separated acts and the one-to-one operators was investigated, and the associated S-act of coshT and its attributes have been examined. In this paper, we proved for any bounded Linear operators T, VcoshT is faithful and separated S-act, and if a Banach space V is finite-dimensional, VcoshT is infinitely generated.
The notion of a Tˉ-pure sub-act and so Tˉ-pure sub-act relative to sub-act are introduced. Some properties of these concepts have been studied.
In this article, we introduce a class of modules that is analogous of generalized extending modules. First we define a module M to be a generalized ECS if and only if for each ec-closed submodule A of M, there exists a direct summand D of M such that is singular, and then we locate generalized ECS between the other extending generalizations. After that we present some of characterizations of generalized ECS condition. Finally, we show that the direct sum of a generalized ECS need not be generalized ECS and deal with decompositions for be generalized ECS concept.
Let R be a commutative ring with identity 1 ¹ 0, and let M be a unitary left module over R. A submodule N of an R-module M is called essential, if whenever N ⋂ L = (0), then L = (0) for every submodule L of M. In this case, we write N ≤e M. An R-module M is called extending, if every submodule of M is an essential in a direct summand of M. A submodule N of an R-module M is called semi-essential (denoted by N ≤sem M), if N ∩ P ≠ (0) for each nonzero prime submodule P of M. The main purpose of this work is to determine and study two new concepts (up to our knowledge) which are St-closed submodules and semi-extending modules. St-closed submodules is contained properly in the class of closed submodules, where a submodule N of
... Show MoreIn this paper, we introduce the notation of the soft bornological group to solve the problem of boundedness for the soft group. We combine soft set theory with bornology space to produce a new structure which is called soft bornological group. So that both the product and inverse maps are soft bounded. As well as, we study the actions of the soft bornological group on the soft bornological sets. The aim soft bornological set is to partition into orbital classes by acting soft bornological group on the soft bornological set. In addition, we explain the centralizer, normalizer, and stabilizer in details. The main important results are to prove that the product of soft bornological groups is soft bornol
... Show MoreLet R be a commutative ring with unity .M an R-Module. M is called coprime module (dual notion of prime module) if ann M =ann M/N for every proper submodule N of M In this paper we study coprime modules we give many basic properties of this concept. Also we give many characterization of it under certain of module.
The concept of St-Polyform modules, was introduced and studied by Ahmed in [1], where a module M is called St-polyform, if for every submodule N of M and for any homomorphism ð‘“:N M; kerð‘“ is St-closed submodule in N. The novelty of this paper is to dualize this class of modules, the authors call it CSt-polyform modules, and according to this dualizations, some results which appeared in [1] are dualized for example we prove that in the class of hollow modules, every CSt-polyform module is coquasi-Dedekind. In addition, several important properties of CSt-polyform module are established, and other characterization of CSt-polyform is given. Moreover, many relationships of CSt-polyform modules with other related concepts are
... Show MoreIn this paper, we develop the work of Ghawi on close dual Rickart modules and discuss y-closed dual Rickart modules with some properties. Then, we prove that, if are y-closed simple -modues and if -y-closed is a dual Rickart module, then either Hom ( ) =0 or . Also, we study the direct sum of y-closed dual Rickart modules.