Preferred Language
Articles
/
ijs-1989
Expansion Velocities of Elementary Gas in Comet Panstarrs Above 30000 Km from Nucleus
...Show More Authors

The coma gasses consist of molecules liberated from the nucleus by solar heating and relative sublimation. Once they have left the nucleus, these molecules in the coma are exposed to direct solar radiation and can be damaged in various ways due to the combined action of these reactions.

   One of some complex problems facing the research in this field is that the Maxwell-Boltzmann equation gives distribution function for one kind of particles which have same masses, but the gas has multi-groups of particles (Carbon, Neon, Sodium … etc.), where all these components must be in one program to extract average velocity of all and calculate particles velocity to each band. This problem is solved here by Matlab program and the approach demonstrated good results. The study included extracting some elements of comet PanSTARRS by using X-ray spectrum with the calculation of elements’ abundances in respect to Carbon and obtaining particles’ velocity distribution to calculate most of the particles in the intervals of velocities.

  The study shows some physical relationships of cometary heavy elements, which are larger in mass than Carbon and have roughly less abundance in the cometary gases. Using X-ray spectrum, 23 elements of comet PanSTARRS C/2011 S4 were obtained. Carbon showed the highest abundance, followed by Gold.  Apparent abundance of all elements were extracted in respect to Carbon, which was correlated with the distribution function of Maxwell-Boltzmann to calculate element velocities and the bands of most particles’ velocities.

   Gas temperature was found to be equal to 1412 k. From this value, the velocity of each particle was obtained, as shown in the figures, where the velocity range of most particles (about 21% of total particles) was ~ 400-600 m s-1, whereas extending the band  to 200-800 m s-1 showed that the abundance includes  54% of particles.

   An H2O curve peak was found at velocity of 1142 m s-1, while the highest value was ~ 1389 m s-1  for Carbon (relatively light element) and the lowest value was about 340 m s-1 for Gold  particles (relatively heavy element).

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed May 01 2019
Journal Name
Iraqi Journal Of Science
Investigation of nanostructured and gas sensing of tin dioxide films prepared by oxidation of Sn
...Show More Authors

Publication Date
Sun Jun 12 2011
Journal Name
Baghdad Science Journal
Study the effective of annealing on the structural and sensitivity properties for SnO2 thin films to CO2 Gas
...Show More Authors

In this research thin films from SnO2 semiconductor have been prepared by using chemical pyrolysis spray method from solution SnCl2.2H2O at 0.125M concentration on glass at substrate temperature (723K ).Annealing was preformed for prepared thin film at (823K) temperature. The structural and sensing properties of SnO2 thin films for CO2 gas was studied before and after annealing ,as well as we studied the effect temperature annealing on grain size for prepared thin films .

View Publication Preview PDF
Crossref
Publication Date
Mon Feb 28 2022
Journal Name
Structural Chemistry
Sensitivity of SnO2 nanoparticles/reduced graphene oxide hybrid to NO2 gas: A DFT study
...Show More Authors
Abstract<p>The sensitivity of SnO<sub>2</sub> nanoparticles/reduced graphene oxide hybrid to NO<sub>2</sub> gas is discussed in the present work using density functional theory (DFT). The SnO<sub>2</sub> nanoparticles shapes are taken as pyramids, as proved by experiments. The reduced graphene oxide (rGO) edges have oxygen or oxygen-containing functional groups. However, the upper and lower surfaces of rGO are clean, as expected from the oxide reduction procedure. Results show that SnO<sub>2</sub> particles are connected at the edges of rGO, making a p-n heterojunction with a reduced agglomeration of SnO2 particles and high gas sensitivity. The DFT results are in</p> ... Show More
View Publication
Crossref
Publication Date
Wed Jul 01 2020
Journal Name
Journal Of Engineering
Study the Effect of Catalyst -to- Oil Ratio Parameter (COR) on Catalytic Cracking of Heavy Vacuum Gas Oil
...Show More Authors

This work deals with the production of light fuel cuts of (gasoline, kerosene and gas oil) by catalytic cracking treatment of secondary product mater (heavy vacuum gas oil) which was produced from the vacuum distillation unit in any petroleum refinery. The objective of this research was to study the effect of the catalyst -to- oil ratio parameter on catalytic cracking process of heavy vacuum gas oil feed at constant temperature (450 °C). The first step of this treatment was, catalytic cracking of this material by constructed batch reactor occupied with auxiliary control devices, at selective range of the catalyst –to- oil ratio parameter (  2, 2.5, 3 and 3.5) respectively.  The conversion of heavy vacuum gas

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Apr 26 2020
Journal Name
Iraqi Journal Of Science
Synthesis and characterization of silver oxide nanoparticles prepared by chemical bath deposition for NH3 gas sensing applications
...Show More Authors

Nano-silver oxide thin films with high sensitivity for NH3 gas were deposited on glass substrates by the chemical bath deposition technique. The preparations were made under different values of pH and deposition time at 70áµ’ C, using silver nitrate AgNO3 and triethanolamine. XRD analysis showed that all thin films were
polycrystalline with several peaks of silver oxides such as Ag2O, AgO and Ag3O4, with an average crystallite size that ranged between 31.7 nm and 45.8 nm, depending on the deposition parameters. Atomic force microscope (AFM) technique illustrated that the films were homogenous with different surface roughness and the
grain size ranged between 55.69 nm and 86.23 nm. The UV-Vis spectrophotometer showed that the op

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Wed Oct 28 2020
Journal Name
Iraqi Journal Of Science
Optical and Structural Properties of Titanium Dioxide Papered by DC Magneto-Sputtering as a NO2 Gas Sensor
...Show More Authors

 In this work, a reactive DC magnetron sputtering technique was used to prepare TiO2 thin films. The variation in argon and oxygen gases mixing ratios (4:1, 2:1, 1:1, 1:2, 1:4) was used to achieve optimal properties for gas sensing. In addition, an analysis of the optical XRD properties of TiO2 thin films is presented. High-quality and uniform nanocrystalline films were obtained at a working gas pressure of 0.25 mbar and  1:4 (Ar/O2) gas mixture. The optical properties showed a transparent thin film with uniform adherence to the substrate. The average transmission of the TiO2 films deposited on the glass substrates was higher than 95% over the range of 400 to 800 nm.

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (5)
Scopus Crossref
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
Determination of Active Phytochemical Compounds of Alhagi Maurorum using Gas Chromatography-Mass Spectroscopy (GC-MS)
...Show More Authors

Alhagi maurorum (camel thorn) is a grayish, evergreen, deeply rooting plant that has spiny needle -like branches. In our study, the phytochemical contents of the root ethanoloic extract of A. maurorum were determined by using gas chromatography-mass spectroscopy (GC-MS). Thirty two chemical constituents were identified. We revealed the existence of oxalic acid, anti-2 acetoxyacetaldoxime, sulfone, butyl isopropyl, 2,3-pentanedione, 2-butanone, n,n,o triacetylhydroxylamine. di(1,2,5-oxadiazole)[3,4-b;3,4-e]pyrazine, isobutane,3,4-hexanedione,3-hexanone, pentane, 3-pentanone, 3-butene, 2-thiopheneacetic acid, 2-pyrazoline, 4-hepten-3-onemethylphosphonic acid, butane, propanoic acid, methane, azetidine, heptane, butanoic a

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (3)
Scopus Crossref
Publication Date
Tue Oct 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Study of Lung Cancer Hazard Due to Radiate Radon Gas for Two Factories in Industrial Region (Shaikh Omar) of Baghdad Governorate
...Show More Authors

During the winter, in the industry region (Shaikh Omer) and by applying a passive radon detector (CR-39), lung cancer risk has been measured in twelve rooms of different workshops of two old factories in this site. The radon concentration is ranged from (123.345 Bq/m3) to (328.985 Bq/m3) with an average of (244.19±61.52 Bq/m3). Lung cancer risk ranged from 55.993 to 149.346 per million people and with an average of (110.855 per million people) which were lower than the recommended values (170-230 per million people), so there was no cancer risk on workers in these locations.

View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Journal Of College Of Education
An Investigative Study on the Electron Energy Distribution Function and Electron Transport Coefficients in SF6 -- Ne Gas Mixtures
...Show More Authors

Preview PDF
Publication Date
Fri Dec 01 2023
Journal Name
Chemical Methodologies
Investigations on TiO<inf>2</inf>-NiO@In<inf>2</inf>O<inf>3</inf> Nanocomposite Thin Films (NCTFs) for Gas Sensing: Synthesis, Physical Characterization, and Detection of NO<inf>2</inf> and H<inf>2</inf>S Gas Sensors
...Show More Authors

Scopus (11)
Scopus