Preferred Language
Articles
/
hxduTo8BVTCNdQwCJWop
Investigation of nanostructured and gas sensing of tin dioxide films prepared by oxidation of Sn

Publication Date
Wed May 01 2019
Journal Name
Iraqi Journal Of Science
Investigation of Nanostructured and Gas Sensing of Tin Dioxide (Sno2) Films Prepared by Oxidation of Sn

Nanostructured tin dioxide (SnO2) thin films were prepared by thermal oxidation of Sn, which were ground and embedded in methanol then it was deposited on a glass substrate utilizing casting method. The deposited films were examined for their morphology, and crystal structure by transmission electron microscopy (TEM) scanning electron microscopy (SEM), and X-ray diffraction (XRD) technique. In most cases, it was found that SnO2 thin films had a tetragonal phase, predominantly grown on preferred (110) and (200) planes. The deposited thin films have grain size was about 82 nm. The sensing properties of SnO2against NO2 gas were studied as a function of working temperature and time under optimal co

... Show More
View Publication Preview PDF
Publication Date
Thu Jul 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Effect of substrate Nature on the properties of Tin Sulfide Nanostructured films Prepared by chemical bath deposition

The substrate's nature plays an important role in the characteristics of semiconductor films because of the thermal and lattice mismatching between the film and the substrate. In this study, tin sulfide (SnS) nanostructured thin films were grown on different substrates (polyester, glass, and silicon) using a simple and low-cost chemical bath deposition technique. The structural, morphological, and optical properties of the grown thin films were investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and ultraviolet-visible-near infrared (UV-Vis-NIR) spectroscopy. The XRD and FESEM results of the prepared films revealed that each film is polycrystalline and exhibits both orthorhombic and cubic stru

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Oct 15 2015
Journal Name
Journal Of Physical Vapor Deposition Science And Technology (jpvdst)
Publication Date
Sun Dec 06 2009
Journal Name
Baghdad Science Journal
Study of properties of electrical conductivity of Tin dioxide thin films treated with Xenon impulse radiation used as Gas sensors

During of Experimental result of this work , we found that the change of electrical conductivity proprieties of tin dioxide with the change of gas concentration at temperatures 260oC and 360oC after treatment by photons rays have similar character after treatment isothermally. We found that intensive short duration impulse annealing during the fractions of a second leads to crystallization of the films and to the high values of its gas sensitivity.

Crossref
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Iraqi Journal Of Applied Physics
Scopus
Publication Date
Mon May 15 2023
Journal Name
Iraqi Journal Of Science
Investigation of Sn(IV) and Sn(II) by dianionicligand compounds Supported by Nitrogen-Based Ligands

Synthetic routes to a series of tin compounds incorporating nitrogen-based
chelating ligands are described. The β-diketiminato tin chloride precursor was
utilized to isolate the first tin-phosphorus tin compound using this ligand,
[(HC{C(Me)NAr}2)SnPPh2]. A diamide ligand was employed to investigate tin (II)
and (IV) compounds. Two tin (II) and (IV) compounds, [(Me2Si{ArN}2)SnPh2] and
[Li(OEt)2](Me2Si{ArN}2)SnPh2], were formed via reaction of the lithiated
preligand, [Me2Si{ArNLi}2]+Sn(IV). Finally a novel Sn(II) N-heterocyclic
stannylene compound was formed by reaction of the preligand with SnCl4.
The diamide ligand was found to be suitable for both Sn(IV) and Sn(II)
compounds. Reaction to obtain the tin dich

... Show More
View Publication Preview PDF
Publication Date
Wed Aug 09 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Optical Properties & Structural of Dioxide Thin Films Prepared by Chemical Spray Pyrolysis

 X-ray diffraction pattern reveled the tetragonal crystal system of SnO2  Thin films of SnO2 were prepared on glass substrates using Spray Pyrolysis Technique. The absorption and transmition spectra were recorded in the rang of 300-900nm,  the   spectral   dependences   of   absorption coefficient were calculated   from   transmission spectra. The direct and allowed optical  energy gap has been evaluated from plots of   (αhÏ…)²  vs. (hÏ…) . The energy gap was found to be  2.4-2.6eV.  The optical constant such as extinction coefficient( k )  and absorption coefficient ( α) have been evaluated. 

View Publication Preview PDF
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Employment of Titanium dioxide thin film on NO2 gas sensing
Abstract<p>TiO<sub>2</sub> thin films were deposited by Spray Pyrolysis with thickness ((350±25) nm) onto glass substrates at (350°C), and the film was annealed at temperatures (400 and 500)°C. The structural and morphological properties of the thin films (TiO<sub>2</sub>) were investigated by X-ray diffraction, Field emission scanning electron microscopy and atomic force microscope. The gas sensor fabricated by evaporating aluminum electrodes using the annealed TiO<sub>2</sub> thin films as an active material. The sensitivity of the sensors was determined by change the electrical resistance towards NO<sub>2</sub> at different working temperatures (200 </p> ... Show More
Crossref (2)
Crossref
View Publication
Publication Date
Wed Sep 01 2021
Journal Name
Iraqi Journal Of Physics
Toxic Gas Response for Nanostructured Cobalt Oxide Thin Films

 The gas sensing properties of undoped Co3O4 and doped with Y2O3 nanostructures were investigated. The films were synthesized using the hydrothermal method on a seeded layer. The XRD, SEM analysis and gas sensing properties were investigated for the prepared thin films. XRD analysis showed that all films were polycrystalline, of a cubic structure with crystallite size of (12.6) nm for cobalt oxide and (12.3) nm for the Co3O4:6% Y2O3. The SEM analysis of thin films indicated that all films undoped Co3O4 and doped possessed a nanosphere-like structure.

The sensi

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Sat Oct 01 2011
Journal Name
Iraqi Journal Of Physics
Some gas sensing properties of PbS thin films

In this research PbS thin film have been prepared by chemical bath deposition technique (CBD).The PbS film with thickness of (1-1.5)μm was thermally treated at temperature of 100°C for 4 hours. Some Structural characteristics was studied by using X-ray diffraction (XRD)and optical microscope photograph some of chemical gas sensing measurements were carried out ,it shown that the sensitivity of (CO2) gas depend on the grain Size and deposition substrate. The grain size of PbS film deposited on on glass closed to 21.4 nm while 37.97nm for Si substrate. The result of current-voltage characterization shwon the sensitivity of prepared film deposited on Si better than film on glass.

View Publication Preview PDF