In this paper, we introduce and study the notions of fuzzy quotient module, fuzzy (simple, semisimple) module and fuzzy maximal submodule. Also, we give many basic properties about these notions.
Throughout this paper, we introduce the notion of weak essential F-submodules of F-modules as a generalization of weak essential submodules. Also we study the homomorphic image and inverse image of weak essential F-submodules.
In this paper it was presented the idea quasi-fully cancellation fuzzy modules and we will denote it by Q-FCF(M), condition universalistic idea quasi-fully cancellation modules It .has been circulated to this idea quasi-max fully cancellation fuzzy modules and we will denote it by Q-MFCF(M). Lot of results and properties have been studied in this research.
The study of torsion {torsion free) fuzzy modules over fuzzy
integtal domain as a generalization oftorsion (torsion free) modules.
Throughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ⊊ W ⊆ M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of rings
... Show MoreThroughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ? W ? M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of ri
... Show MoreAbstract
The traffic jams taking place in the cities of the Republic of Iraq in general and the province of Diwaniyah especially, causes return to the large numbers of the modern vehicles that have been imported in the last ten years and the lack of omission for old vehicles in the province, resulting in the accumulation of a large number of vehicles that exceed the capacity of the city's streets, all these reasons combined led to traffic congestion clear at the time of the beginning of work in the morning, So researchers chose local area network of the main roads of the province of Diwaniyah, which is considered the most important in terms of traffic congestion, it was identified fuzzy numbers for
... Show MoreLet be a commutative ring with identity and be an -module. In this work, we present the concept of semi--maximal sumodule as a generalization of -maximal submodule.
We present that a submodule of an -module is a semi--maximal (sortly --max) submodule if is a semisimple -module (where is a submodule of ). We investegate some properties of these kinds of modules.
In this paper we introduced many new concepts all of these concepts completely
depended on the concept of feebly open set. The main concepts which introduced in
this paper are minimal f-open and maximal f-open sets. Also new types of
topological spaces introduced which called Tf min and Tf max spaces. Besides,
we present a package of maps called: minimal f-continuous, maximal f-continuous,
f-irresolute minimal, f-irresolute maximal, minimal f-irresolute and maximal firresolute.
Additionally we investigated some fundamental properties of the concepts
which presented in this paper.
In this paper, we introduce and study the notion of the maximal ideal graph of a commutative ring with identity. Let R be a commutative ring with identity. The maximal ideal graph of R, denoted by MG(R), is the undirected graph with vertex set, the set of non-trivial ideals of R, where two vertices I1 and I2 are adjacent if I1 I2 and I1+I2 is a maximal ideal of R. We explore some of the properties and characterizations of the graph.