In this work, we introduce an intuitionistic fuzzy ideal on a KU-semigroup as a generalization of the fuzzy ideal of a KU-semigroup. An intuitionistic fuzzy k-ideal and some related properties are studied. Also, a number of characteristics of the intuitionistic fuzzy k-ideals are discussed. Next, we introduce the concept of intuitionistic fuzzy k-ideals under homomorphism along with the Cartesian products.
The study of homomorphisms in cubic sets is considered one of the important concepts that transfer algebraic properties between different structures, so we study a homomorphism of a cubic set of a semigroup in a KU-algebra and defined the product of two cubic sets in this structure. Firstly, we define the image and the inverse image of a cubic set in a KU-semigroup and achieve some results in this notion. Secondly, the Cartesian product of cubic subsets in a KU-semigroup is discussed and some important characteristics are proved.
The aim of this research is to study some types of fibrewise fuzzy topological spaces. The six major goals are explored in this thesis. The very first goal, introduce and study the notions types of fibrewise topological spaces, namely fibrewise fuzzy j-topological spaces, Also, we introduce the concepts of fibrewise j-closed fuzzy topological spaces, fibrewise j-open fuzzy topological spaces, fibrewise locally sliceable fuzzy j-topological spaces and fibrewise locally sectionable fuzzy j-topological spaces. Furthermore, we state and prove several Theorems concerning these concepts, where j={δ,θ,α,p,s,b,β} The second goal is to introduce weak and strong forms of fibrewise fuzzy ω-topological spaces, namely the fibrewise fuz
... Show MoreIn this paper, the definition of fuzzy anti-inner product in a linear space is introduced. Some results of fuzzy anti-inner product spaces are given, such as the relation between fuzzy inner product space and fuzzy anti-inner product. The notion of minimizing vector is introduced in fuzzy anti-inner product settings.
In this study, the concept of fuzzy α-topological vector space is introduced by using the concept fuzzy α-open set , some properties of fuzzy α-topological vector spaces are proved .We also show that the space is -space iff every singleton set is fuzzy α- closed .Finally, the convex property and its relation with the interior points are discussed.
Emails have proliferated in our ever-increasing communication, collaboration and
information sharing. Unfortunately, one of the main abuses lacking complete benefits of
this service is email spam (or shortly spam). Spam can easily bewilder system because
of its availability and duplication, deceiving solicitations to obtain private information.
The research community has shown an increasing interest to set up, adapt, maintain and
tune several spam filtering techniques for dealing with emails and identifying spam and
exclude it automatically without the interference of the email user. The contribution of
this paper is twofold. Firstly, to present how spam filtering methodology can be
constructed based on the concep
The molar ratio(x) of Li-Ni ferrites in the formula Li0.5-0.5xNixFe2.5-
0.5xO4 was varied in range 0.1-1.0 by hydrothermal process. The
XRD, SEM, and TEM tests were conducted to examine the samples
crystalline phase and to characterize the particles shapes and sizes.
The high purity spinel structure was obtained at med and high x
values. SEM and TEM images showed the existence of different
ferrite particles shapes like nanospheres and nanorods. The
maximum particle size is around (20nm). These size encourage
occurrence of super paramagnetic state. The reflection loss and
insertion loss as microwave losses of Li-Ni ferrite-epoxy composite
of 1mm thickness and mixing ratio 39.4 wt was investigated. The
mini
This paper introduce two types of edge degrees (line degree and near line degree) and total edge degrees (total line degree and total near line degree) of an edge in a fuzzy semigraph, where a fuzzy semigraph is defined as (V, σ, μ, η) defined on a semigraph G* in which σ : V → [0, 1], μ : VxV → [0, 1] and η : X → [0, 1] satisfy the conditions that for all the vertices u, v in the vertex set, μ(u, v) ≤ σ(u) ᴧ σ(v) and η(e) = μ(u1, u2) ᴧ μ(u2, u3) ᴧ … ᴧ μ(un-1, un) ≤ σ(u1) ᴧ σ(un), if e = (u1, u2, …, un), n ≥ 2 is an edge in the semigraph G
... Show MoreFuzzy measures are considered important tools to solve many environmental problems. Water pollution is one of the environmental problems, which has negatively effect on the health of consumers. In this paper, a mathematical model is proposed to evaluate water quality in the distribution networks of Baghdad city. Fuzzy logic and fuzzy measures have been applied to evaluate water quality with respect to chemical and microbiological contaminants. Our results are evaluate water pollution of some chemical and microbiological contaminants, which are difficult to evaluation through traditional methods.
Baghdad and the other Iraqis provinces have witnessed many of celebrations which have the significant effect on the souls of Arabic and Islamic people in general , and Iraqi people, especially the birthday and death of two al-kadhimen Imams(peace upon them) and others .From here the researcher begin to study the visiting of imam kadhimen (peace upon him) on 25 Rajab the commemoration of his sacrifice, simply because have implications of religious, ideological and cultural sectors which represents in finding the greatest flow of visitors .the problem of research appeared due to the clear difference in number of visitors during one day, beside the significant increase in number of visitors throu
... Show MoreIn this paper, we proved that if R is a prime ring, U be a nonzero Lie ideal of R , d be a nonzero (?,?)-derivation of R. Then if Ua?Z(R) (or aU?Z(R)) for a?R, then either or U is commutative Also, we assumed that Uis a ring to prove that: (i) If Ua?Z(R) (or aU?Z(R)) for a?R, then either a=0 or U is commutative. (ii) If ad(U)=0 (or d(U)a=0) for a?R, then either a=0 or U is commutative. (iii) If d is a homomorphism on U such that ad(U) ?Z(R)(or d(U)a?Z(R), then a=0 or U is commutative.