In this work, we introduce an intuitionistic fuzzy ideal on a KU-semigroup as a generalization of the fuzzy ideal of a KU-semigroup. An intuitionistic fuzzy k-ideal and some related properties are studied. Also, a number of characteristics of the intuitionistic fuzzy k-ideals are discussed. Next, we introduce the concept of intuitionistic fuzzy k-ideals under homomorphism along with the Cartesian products.
Throughout this paper, we introduce the notion of weak essential F-submodules of F-modules as a generalization of weak essential submodules. Also we study the homomorphic image and inverse image of weak essential F-submodules.
There are several methods that are used to solve the traditional transportation problems whose units of supply, demand quantities, and cost transportation are known exactly. These methods obtain basic solution, and develop it to the best solution through a series of consecutive calculations to obtain the optimal solution.
The steps are more complex with fuzzy variables, so this paper presents the disadvantages of solutions of the traditional ways with existence of variables in the fuzzy form.
This paper also presents a comparison between the results that emerged after using different conversion ranking formulas to convert from fuzzy form to crisp form on the same numerical example with a full fuzz
In this paper, we generalize the definition of fuzzy inner product space that is introduced by Lorena Popa and Lavinia Sida on a complex linear space. Certain properties of the generalized fuzzy inner product function are shown. Furthermore, we prove that this fuzzy inner product produces a Nadaban-Dzitac fuzzy norm. Finally, the concept of orthogonality is given and some of its properties are proven.
The multiplicity of connotations in any paper does not mean that there is no main objective for that paper and certainly one of these papers is our research the main objective is to introduce a new connotation which is type-2 fuzzy somewhere dense set in general type-2 fuzzy topological space and its relationship with open sets of the connotation type-2 fuzzy set in the same space topology and theories of this connotation.
Our goal in the present paper is to introduce a new type of fuzzy inner product space. After that, to illustrate this notion, some examples are introduced. Then we prove that that every fuzzy inner product space is a fuzzy normed space. We also prove that the cross product of two fuzzy inner spaces is again a fuzzy inner product space. Next, we prove that the fuzzy inner product is a non decreasing function. Finally, if U is a fuzzy complete fuzzy inner product space and D is a fuzzy closed subspace of U, then we prove that U can be written as a direct sum of D and the fuzzy orthogonal complement of D.
Research summarized in applying the model of fuzzy goal programming for aggregate production planning , in General Company for hydraulic industries / plastic factory to get an optimal production plan trying to cope with the impact that fluctuations in demand and employs all available resources using two strategies where they are available inventories strategy and the strategy of change in the level of the workforce, these strategies costs are usually imprecise/fuzzy. The plant administration trying to minimize total production costs, minimize carrying costs and minimize changes in labour levels. depending on the gained data from th
... Show More The current paper studied the concept of right n-derivation satisfying certified conditions on semigroup ideals of near-rings and some related properties. Interesting results have been reached, the most prominent of which are the following: Let M be a 3-prime left near-ring and A_1,A_2,…,A_n are nonzero semigroup ideals of M, if d is a right n-derivation of M satisfies on of the following conditions,
d(u_1,u_2,…,(u_j,v_j ),…,u_n )=0 ∀ 〖 u〗_1 〖ϵA〗_1 ,u_2 〖ϵA〗_2,…,u_j,v_j ϵ A_j,…,〖u_n ϵA〗_u;
d((u_1,v_1 ),(u_2,v_2 ),…,(u_j,v_j ),…,(u_n,v_n ))=0 ∀u_1,v_1 〖ϵA〗_1,u_2,v_2 〖ϵA〗_2,…,u_j,v_j ϵ A_j,…,〖u_n,v_n ϵA〗_u ;
d((u_1,v_1 ),(u_2,v_2 ),…,(u_j,v_j ),…,(u_n,v_n ))=(u_
The aim of this paper is to introduce the definition of a general fuzzy norned space as a generalization of the notion fuzzy normed space after that some illustrative examples are given then basic properties of this space are investigated and proved.
For example when V and U are two general fuzzy normed spaces then the operator is a general fuzzy continuous at u V if and only if u in V implies S(u) in U.
The aim of this paper is to translate the basic properties of the classical complete normed algebra to the complete fuzzy normed algebra at this end a proof of multiplication fuzzy continuous is given. Also a proof of every fuzzy normed algebra without identity can be embedded into fuzzy normed algebra with identity and is an ideal in is given. Moreover the proof of the resolvent set of a non zero element in complete fuzzy normed space is equal to the set of complex numbers is given. Finally basic properties of the resolvent space of a complete fuzzy normed algebra is given.