The cloud-users are getting impatient by experiencing the delays in loading the content of the web applications over the internet, which is usually caused by the complex latency while accessing the cloud datacenters distant from the cloud-users. It is becoming a catastrophic situation in availing the services and applications over the cloud-centric network. In cloud, workload is distributed across the multiple layers which also increases the latency. Time-sensitive Internet of Things (IoT) applications and services, usually in a cloud platform, are running over various virtual machines (VM’s) and possess high complexities while interacting. They face difficulties in the consolidations of the various applications containing heterogenetic workloads. Fog computing takes the cloud computing services to the edge-network, where computation, communication and storage are within the proximity to the end-user’s edge devices. Thus, it utilizes the maximum network bandwidth, enriches the mobility, and lowers the latency. It is a futuristic, convenient and more reliable platform to overcome the cloud computing issues. In this manuscript, we propose a Fog-based Spider Web Algorithm (FSWA), a heuristic approach which reduces the delays time (DT) and enhances the response time (RT) during the workflow among the various edge nodes across the fog network. The main purpose is to trace and locate the nearest f-node for computation and to reduce the latency across the various nodes in a network. Reduction of latency will enhance the quality of service (QoS) parameters, smooth resource distribution, and services availability. Latency can be an important factor for resource optimization issues in distributed computing environments. In comparison to the cloud computing, the latency in fog computing is much improved.
The emergence and spread of methicillin-resistant Staphylococcus aureus (MRSA) was a public health problem worldwide that causes nosocomial and community infections. Forty three isolates (71.66%) were characterized as S.aureus, were isolated from 60 different clinical specimens (blood, nose, wound, urine and vaginal) collected from patients from different hospitals of Baghdad. All isolates were resistant (100%) to Aztreonam, Carbenicillin, Cifixime, Cefoxitin, Ceftazidime, and showed high resistance to each of Methicillin, Oxacillin, Ampicillin and Penicillin . the MRSA isolates were typed based on (SCCmec) typing ,the result revealed that SCCmecIVa was the most common in isolates (41.86%), following type IVc (20.93%), type II(16.27%). V
... Show MoreFlexible job-shop scheduling problem (FJSP) is one of the instances in flexible manufacturing systems. It is considered as a very complex to control. Hence generating a control system for this problem domain is difficult. FJSP inherits the job-shop scheduling problem characteristics. It has an additional decision level to the sequencing one which allows the operations to be processed on any machine among a set of available machines at a facility. In this article, we present Artificial Fish Swarm Algorithm with Harmony Search for solving the flexible job shop scheduling problem. It is based on the new harmony improvised from results obtained by artificial fish swarm algorithm. This improvised solution is sent to comparison to an overall best
... Show MoreThe High Power Amplifiers (HPAs), which are used in wireless communication, are distinctly characterized by nonlinear properties. The linearity of the HPA can be accomplished by retreating an HPA to put it in a linear region on account of power performance loss. Meanwhile the Orthogonal Frequency Division Multiplex signal is very rough. Therefore, it will be required a large undo to the linear action area that leads to a vital loss in power efficiency. Thereby, back-off is not a positive solution. A Simplicial Canonical Piecewise-Linear (SCPWL) model based digital predistorters are widely employed to compensating the nonlinear distortion that introduced by a HPA component in OFDM technology. In this paper, the genetic al
... Show MoreEstablishing complete and reliable coverage for a long time-span is a crucial issue in densely surveillance wireless sensor networks (WSNs). Many scheduling algorithms have been proposed to model the problem as a maximum disjoint set covers (DSC) problem. The goal of DSC based algorithms is to schedule sensors into several disjoint subsets. One subset is assigned to be active, whereas, all remaining subsets are set to sleep. An extension to the maximum disjoint set covers problem has also been addressed in literature to allow for more advance sensors to adjust their sensing range. The problem, then, is extended to finding maximum number of overlapped set covers. Unlike all related works which concern with the disc sensing model, the cont
... Show MoreThe Electric Discharge (EDM) method is a novel thermoelectric manufacturing technique in which materials are removed by a controlled spark erosion process between two electrodes immersed in a dielectric medium. Because of the difficulties of EDM, determining the optimum cutting parameters to improve cutting performance is extremely tough. As a result, optimizing operating parameters is a critical processing step, particularly for non-traditional machining process like EDM. Adequate selection of processing parameters for the EDM process does not provide ideal conditions, due to the unpredictable processing time required for a given function. Models of Multiple Regression and Genetic Algorithm are considered as effective methods for determ
... Show MoreThis paper presents a robust algorithm for the assessment of risk priority for medical equipment based on the calculation of static and dynamic risk factors and Kohnen Self Organization Maps (SOM). Four risk parameters have been calculated for 345 medical devices in two general hospitals in Baghdad. Static risk factor components (equipment function and physical risk) and dynamics risk components (maintenance requirements and risk points) have been calculated. These risk components are used as an input to the unsupervised Kohonen self organization maps. The accuracy of the network was found to be equal to 98% for the proposed system. We conclude that the proposed model gives fast and accurate assessment for risk priority and it works as p
... Show MoreUrban Development refers to many topics such as: increased population density, city size, and individual’s production, distribution of technology and the growth of commercial, industrial and service professions. Such development is linked to the coordination of social and cultural trends in order to achieve social progress and economical prosperity. Knowledge as a topic now is known as intellectual capital wich led to upgrae the concept of urban development to be extended into many fields of knowledge, for example, cultural, social and human development to move the level of community culture into a new better standard.
The research adopted the urban transformation based on knowledge as an important factor in gr
... Show MoreDocument clustering is the process of organizing a particular electronic corpus of documents into subgroups of similar text features. Formerly, a number of conventional algorithms had been applied to perform document clustering. There are current endeavors to enhance clustering performance by employing evolutionary algorithms. Thus, such endeavors became an emerging topic gaining more attention in recent years. The aim of this paper is to present an up-to-date and self-contained review fully devoted to document clustering via evolutionary algorithms. It firstly provides a comprehensive inspection to the document clustering model revealing its various components with its related concepts. Then it shows and analyzes the principle research wor
... Show MoreWithin the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amo
... Show More