Reactive arthritis (ReA) is an incendiary joint inflammation that occurs few days to weeks after a gastrointestinal or genitourinary infection. The etiology of the disease is not well-known. Therefore, the present study included 80 females and 25 males, divided into 51 patients with reactive arthritis and 54 healthy individuals as control group. The study involved the detection of serum levels of anti-rheumatoid factor and anti-cyclic citrullinated peptide antibodies (anti-CCP) as well as those of CRP and C3 in all subjects. In addition, EBV levels were detected by Real Time-PCR technique. The results showed significantly increased levels (P < 0.05) of CRP, C3 and anti-CCP Ab in ReA patients’ group compared to the healthy control group (505.42 ± 402.94 versus 255.62 ± 135.5 U/ml, 61.20 ± 100.64 versus 20.43 ± 47.63 ng/ml and 35.11 ± 30.0 versus 6.82 ± 14.01 pg/ml, respectively), Also, the RF results demonstrated a significantly increased percentage in ReA patients’ group compared to a healthy control group (61.11 versus 37.25 %). While, the molecular study showed a non-significant increase in the percentage of EBV in ReA patients’ group compared to a healthy control group (17.65 versus 12.69 %). The results of this study lead to suggest that the immunological markers used may play a role in the development of ReA disease, while there was a non-significant association between EBV infection and ReA disease development.
Determining the face of wearing a mask from not wearing a mask from visual data such as video and still, images have been a fascinating research topic in recent decades due to the spread of the Corona pandemic, which has changed the features of the entire world and forced people to wear a mask as a way to prevent the pandemic that has calmed the entire world, and it has played an important role. Intelligent development based on artificial intelligence and computers has a very important role in the issue of safety from the pandemic, as the Topic of face recognition and identifying people who wear the mask or not in the introduction and deep education was the most prominent in this topic. Using deep learning techniques and the YOLO (”You on
... Show MoreSeveral Intrusion Detection Systems (IDS) have been proposed in the current decade. Most datasets which associate with intrusion detection dataset suffer from an imbalance class problem. This problem limits the performance of classifier for minority classes. This paper has presented a novel class imbalance processing technology for large scale multiclass dataset, referred to as BMCD. Our algorithm is based on adapting the Synthetic Minority Over-Sampling Technique (SMOTE) with multiclass dataset to improve the detection rate of minority classes while ensuring efficiency. In this work we have been combined five individual CICIDS2017 dataset to create one multiclass dataset which contains several types of attacks. To prove the eff
... Show MoreIntrusion-detection systems (IDSs) aim at detecting attacks against computer systems and networks or, in general, against information systems. Most of the diseases in human body are discovered through Deoxyribonucleic Acid (DNA) investigations. In this paper, the DNA sequence is utilized for intrusion detection by proposing an approach to detect attacks in network. The proposed approach is a misuse intrusion detection that consists of three stages. First, a DNA sequence for a network traffic taken from Knowledge Discovery and Data mining (KDD Cup 99) is generated. Then, Teiresias algorithm, which is used to detect sequences in human DNA and assist researchers in decoding the human genome, is used to discover the Shortest Tandem Repeat (S
... Show MoreSecure data communication across networks is always threatened with intrusion and abuse. Network Intrusion Detection System (IDS) is a valuable tool for in-depth defense of computer networks. Most research and applications in the field of intrusion detection systems was built based on analysing the several datasets that contain the attacks types using the classification of batch learning machine. The present study presents the intrusion detection system based on Data Stream Classification. Several data stream algorithms were applied on CICIDS2017 datasets which contain several new types of attacks. The results were evaluated to choose the best algorithm that satisfies high accuracy and low computation time.
With the growth of mobile phones, short message service (SMS) became an essential text communication service. However, the low cost and ease use of SMS led to an increase in SMS Spam. In this paper, the characteristics of SMS spam has studied and a set of features has introduced to get rid of SMS spam. In addition, the problem of SMS spam detection was addressed as a clustering analysis that requires a metaheuristic algorithm to find the clustering structures. Three differential evolution variants viz DE/rand/1, jDE/rand/1, jDE/best/1, are adopted for solving the SMS spam problem. Experimental results illustrate that the jDE/best/1 produces best results over other variants in terms of accuracy, false-positive rate and false-negative
... Show MoreInflammation markers are significantly higher among hemodialysis (HD) patients, which have been associated with chronic activation of the immune system. Hemodialysis centers in Baghdad appear to be taking measures with low adequacy and frequency of dialysis sessions, which can be a reason for decreased kidney functions. Therefore, the objective of this study focuses on the assessment of different aspects of hemodialysis for regular HD patients in Baghdad, including inflammatory markers (serum C-reactive protein, CRP, and erythrocyte sedimentation rate, ESR), dialysis dose, comorbidities, and demographic factors for a period of one year (2018), the assessment covered four major hospitals in Baghdad namely (Al-Kind
... Show MoreHeart sound is an electric signal affected by some factors during the signal's recording process, which adds unwanted information to the signal. Recently, many studies have been interested in noise removal and signal recovery problems. The first step in signal processing is noise removal; many filters are used and proposed for treating this problem. Here, the Hankel matrix is implemented from a given signal and tries to clean the signal by overcoming unwanted information from the Hankel matrix. The first step is detecting unwanted information by defining a binary operator. This operator is defined under some threshold. The unwanted information replaces by zero, and the wanted information keeping in the estimated matrix. The resulting matrix
... Show MoreCommunity detection is an important and interesting topic for better understanding and analyzing complex network structures. Detecting hidden partitions in complex networks is proven to be an NP-hard problem that may not be accurately resolved using traditional methods. So it is solved using evolutionary computation methods and modeled in the literature as an optimization problem. In recent years, many researchers have directed their research efforts toward addressing the problem of community structure detection by developing different algorithms and making use of single-objective optimization methods. In this study, we have continued that research line by improving the Particle Swarm Optimization (PSO) algorithm using a
... Show More