Reactive arthritis (ReA) is an incendiary joint inflammation that occurs few days to weeks after a gastrointestinal or genitourinary infection. The etiology of the disease is not well-known. Therefore, the present study included 80 females and 25 males, divided into 51 patients with reactive arthritis and 54 healthy individuals as control group. The study involved the detection of serum levels of anti-rheumatoid factor and anti-cyclic citrullinated peptide antibodies (anti-CCP) as well as those of CRP and C3 in all subjects. In addition, EBV levels were detected by Real Time-PCR technique. The results showed significantly increased levels (P < 0.05) of CRP, C3 and anti-CCP Ab in ReA patients’ group compared to the healthy control group (505.42 ± 402.94 versus 255.62 ± 135.5 U/ml, 61.20 ± 100.64 versus 20.43 ± 47.63 ng/ml and 35.11 ± 30.0 versus 6.82 ± 14.01 pg/ml, respectively), Also, the RF results demonstrated a significantly increased percentage in ReA patients’ group compared to a healthy control group (61.11 versus 37.25 %). While, the molecular study showed a non-significant increase in the percentage of EBV in ReA patients’ group compared to a healthy control group (17.65 versus 12.69 %). The results of this study lead to suggest that the immunological markers used may play a role in the development of ReA disease, while there was a non-significant association between EBV infection and ReA disease development.
Intrusion detection systems detect attacks inside computers and networks, where the detection of the attacks must be in fast time and high rate. Various methods proposed achieved high detection rate, this was done either by improving the algorithm or hybridizing with another algorithm. However, they are suffering from the time, especially after the improvement of the algorithm and dealing with large traffic data. On the other hand, past researches have been successfully applied to the DNA sequences detection approaches for intrusion detection system; the achieved detection rate results were very low, on other hand, the processing time was fast. Also, feature selection used to reduce the computation and complexity lead to speed up the system
... Show MoreThe cuneiform images need many processes in order to know their contents
and by using image enhancement to clarify the objects (symbols) founded in the
image. The Vector used for classifying the symbol called symbol structural vector
(SSV) it which is build from the information wedges in the symbol.
The experimental tests show insome numbersand various relevancy including
various drawings in online method. The results are high accuracy in this research,
and methods and algorithms programmed using a visual basic 6.0. In this research
more than one method was applied to extract information from the digital images
of cuneiform tablets, in order to identify most of signs of Sumerian cuneiform.
This work explores the designing a system of an automated unmanned aerial vehicles (UAV( for objects detection, labelling, and localization using deep learning. This system takes pictures with a low-cost camera and uses a GPS unit to specify the positions. The data is sent to the base station via Wi-Fi connection.
The proposed system consists of four main parts. First, the drone, which was assembled and installed, while a Raspberry Pi4 was added and the flight path was controlled. Second, various programs that were installed and downloaded to define the parts of the drone and its preparation for flight. In addition, this part included programs for both Raspberry Pi4 and servo, along with protocols for communication, video transmi
... Show MoreAutomatic recognition of individuals is very important in modern eras. Biometric techniques have emerged as an answer to the matter of automatic individual recognition. This paper tends to give a technique to detect pupil which is a mixture of easy morphological operations and Hough Transform (HT) is presented in this paper. The circular area of the eye and pupil is divided by the morphological filter as well as the Hough Transform (HT) where the local Iris area has been converted into a rectangular block for the purpose of calculating inconsistencies in the image. This method is implemented and tested on the Chinese Academy of Sciences (CASIA V4) iris image database 249 person and the IIT Delhi (IITD) iris
... Show MoreThis paper proposes a new method Object Detection in Skin Cancer Image, the minimum
spanning tree Detection descriptor (MST). This ObjectDetection descriptor builds on the
structure of the minimum spanning tree constructed on the targettraining set of Skin Cancer
Images only. The Skin Cancer Image Detection of test objects relies on their distances to the
closest edge of thattree. Our experimentsshow that the Minimum Spanning Tree (MST) performs
especially well in case of Fogginessimage problems and in highNoisespaces for Skin Cancer
Image.
The proposed method of Object Detection Skin Cancer Image wasimplemented and tested on
different Skin Cancer Images. We obtained very good results . The experiment showed that
Face Detection by skin color in the field of computer vision is a difficult challenge. Detection of human skin focuses on the identification of pixels and skin-colored areas of a given picture. Since skin colors are invariant in orientation and size and rapid to process, they are used in the identification of human skin. In addition features like ethnicity, sensor, optics and lighting conditions that are different are sensitive factors for the relationship between surface colors and lighting (an issue that is strongly related to color stability). This paper presents a new technique for face detection based on human skin. Three methods of Probability Density Function (PDF) were applied to detect the face by skin color; these ar
... Show MoreShadow removal is crucial for robot and machine vision as the accuracy of object detection is greatly influenced by the uncertainty and ambiguity of the visual scene. In this paper, we introduce a new algorithm for shadow detection and removal based on different shapes, orientations, and spatial extents of Gaussian equations. Here, the contrast information of the visual scene is utilized for shadow detection and removal through five consecutive processing stages. In the first stage, contrast filtering is performed to obtain the contrast information of the image. The second stage involves a normalization process that suppresses noise and generates a balanced intensity at a specific position compared to the neighboring intensit
... Show More