Preferred Language
Articles
/
ijs-2691
An Improved Probability Density Function (PDF) for Face Skin Detection
...Show More Authors

      Face Detection by skin color in the field of computer vision is a difficult challenge. Detection of human skin focuses on the identification of pixels and skin-colored areas of a given picture. Since skin colors are invariant in orientation and size and rapid to process, they are used in the identification of human skin. In addition features like ethnicity, sensor, optics and lighting conditions that are different are sensitive factors for the relationship between surface colors and lighting (an issue that is strongly related to color stability). This paper presents a new technique for face detection based on human skin. Three methods of Probability Density Function (PDF) were applied to detect the face by skin color; these are the Extreme Value Distribution Function and the Exponential Distribution Function methods, in addition to a new proposed model, over the HSV (Hue, Saturation, and Value) color space. The suggested technique aims to enhance skin pixel detection and improve the detection accuracy of a colored region in the human skin in a specific photo. The new model has proved to be 96.05% more accurate than the Extreme value distribution function and Exponential distribution function according to the selected region of the face during experiments. The images used in this paper were 380 color images from CalTech (California Technology Institute) dataset.

Scopus Crossref
View Publication
Publication Date
Thu May 12 2022
Journal Name
Journal Of Economics And Administrative Sciences
Nonparametric Estimator (Histogram) For Estimating Probability Density Function: Nonparametric Estimator (Histogram) For Estimating Probability Density Function
...Show More Authors

 In this paper we introduce several estimators for Binwidth of histogram estimators' .We use simulation technique to compare these estimators .In most cases, the results proved that the rule of thumb estimator is better than other estimators.

View Publication Preview PDF
Crossref
Publication Date
Thu Feb 28 2019
Journal Name
Iraqi Journal Of Science
Skin Detection using Improved ID3 Algorithm
...Show More Authors

Skin detection is classification the pixels of the image into two types of pixels skin and non-skin. Whereas, skin color affected by many issues like various races of people, various ages of people gender type. Some previous researchers attempted to solve these issues by applying a threshold that depends on certain ranges of skin colors. Despite, it is fast and simple implementation, it does not give a high detection for distinguishing all colors of the skin of people. In this paper suggests improved ID3 (Iterative Dichotomiser) to enhance the performance of skin detection. Three color spaces have been used a dataset of RGB obtained from machine learning repository, the University of California Irvine (UCI), RGB color space, HSV color sp

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 01 2015
Journal Name
International Journal Of Computer Science And Mobile Computing
Single Face Detection on Skin Color and Edge Detection
...Show More Authors

Publication Date
Fri Dec 30 2022
Journal Name
Iraqi Journal Of Science
An Improved Outlier Detection Model for Detecting Intrinsic Plagiarism
...Show More Authors

     In the task of detecting intrinsic plagiarism, the cases where reference corpus is absent are to be dealt with. This task is entirely based on inconsistencies within a given document. Detection of internal plagiarism has been considered as a classification problem. It can be estimated through taking into consideration self-based information from a given document.

The core contribution of the work proposed in this paper is associated with the document representation. Wherein, the document, also, the disjoint segments generated from it, have been represented as weight vectors demonstrating their main content. Where, for each element in these vectors, its average weight has been considered instead of its frequency.

Th

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Tue Oct 01 2019
Journal Name
2019 International Conference On Electrical Engineering And Computer Science (icecos)
An Evolutionary Algorithm for Community Detection Using an Improved Mutation Operator
...Show More Authors

View Publication
Scopus (5)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Thu Jan 01 2015
Journal Name
Journal Of Al-mansoor College
An Improvement to Face Detection Algorithm for Non-Frontal Faces
...Show More Authors

Publication Date
Fri Apr 13 2012
Journal Name
Kut Journal For Economic And Administrative Sciences
Using Different Methods to Estimate the Parameters of Probability Death Density Function with Application
...Show More Authors

In this paper, the maximum likelihood estimates for parameter ( ) of two parameter's Weibull are studied, as well as white estimators and (Bain & Antle) estimators, also Bayes estimator for scale parameter ( ), the simulation procedures are used to find the estimators and comparing between them using MSE. Also the application is done on the data for 20 patients suffering from a headache disease.

Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Journal Of Southwest Jiaotong University
Image Segmentation for Skin Detection
...Show More Authors

Human skin detection, which usually performed before image processing, is the method of discovering skin-colored pixels and regions that may be of human faces or limbs in videos or photos. Many computer vision approaches have been developed for skin detection. A skin detector usually transforms a given pixel into a suitable color space and then uses a skin classifier to mark the pixel as a skin or a non-skin pixel. A skin classifier explains the decision boundary of the class of a skin color in the color space based on skin-colored pixels. The purpose of this research is to build a skin detection system that will distinguish between skin and non-skin pixels in colored still pictures. This performed by introducing a metric that measu

... Show More
View Publication
Crossref (4)
Crossref
Publication Date
Thu Sep 26 2024
Journal Name
Journal Of Optics
Cysteine-cupped CdSe/CdS quantum dots as an opticalbiosensor for early skin cancer detection
...Show More Authors

This study represents an optical biosensor for early skin cancer detection using cysteine-cupped CdSe/CdS Quantum Dots (QDs). The study optimizes QD synthesis, surface, optical functionalization, and bioconjugation to enhance specificity and sensitivity for early skin cancer cell detection. The research provides insights into QD interactions with skin cancer biomarkers, demonstrating high-contrast, precise cellular imaging. Cysteine-capped CdSe/CdS absorption spectra reveal characteristic peaks for undamaged DNA, while spectral shifts indicate structural changes in skin-cancer-damaged DNA. Additionally, fluorescence spectra show sharp peaks for undamaged DNA and notable shifts and intensity variations when interacting with skin cancer. This

... Show More
View Publication
Clarivate Crossref
Publication Date
Sun Sep 01 2013
Journal Name
2013 Ieee International Conference On Circuits And Systems (iccas)
Improved undetected error probability model for JTEC and JTEC-SQED coding schemes
...Show More Authors

The undetected error probability is an important measure to assess the communication reliability provided by any error coding scheme. Two error coding schemes namely, Joint crosstalk avoidance and Triple Error Correction (JTEC) and JTEC with Simultaneous Quadruple Error Detection (JTEC-SQED), provide both crosstalk reduction and multi-bit error correction/detection features. The available undetected error probability model yields an upper bound value which does not give accurate estimation on the reliability provided. This paper presents an improved mathematical model to estimate the undetected error probability of these two joint coding schemes. According to the decoding algorithm the errors are classified into patterns and their decoding

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref