Preferred Language
Articles
/
ijs-5539
Automatic Object Detection, Labelling, and Localization by Camera’s Drone System
...Show More Authors

This work explores the designing a system of an automated unmanned aerial vehicles (UAV( for objects detection, labelling, and localization using deep learning. This system takes pictures with a low-cost camera and uses a GPS unit to specify the positions. The data is sent to the base station via Wi-Fi connection.

The proposed system consists of four main parts. First, the drone, which was assembled and installed, while a Raspberry Pi4 was added and the flight path was controlled. Second, various programs that were installed and downloaded to define the parts of the drone and its preparation for flight. In addition, this part included programs for both Raspberry Pi4 and servo, along with protocols for communication, video transmission, and sending and receiving signals between the drone and the computer. Third, a real-time, modified, one dimensional convolutional neural network (1D-CNN) algorithm, which was applied to detect and determine the type of the discovered objects (labelling). Fourth, GPS devices, which were used to determine the location of the drone starting and ending points . Trigonometric functions were then used for adjusting the camera angle and the drone altitude to calculate the direction of the detected object automatically.

According to the performance evaluation conducted, the implemented system is capable of meeting the targeted requirements.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Dec 07 2021
Journal Name
2021 14th International Conference On Developments In Esystems Engineering (dese)
Object Detection and Distance Measurement Using AI
...Show More Authors

View Publication
Scopus (15)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Fri Jun 30 2023
Journal Name
Iraqi Journal Of Science
Real-Night-time Road Sign Detection by the Use of Cascade Object Detector
...Show More Authors

     Variations in perspective, illumination, motion blur, and weatherworn degeneration of signs may all be essential factors in road-sign identification. The current research purpose is to evaluate the effectiveness of the image processing technique in detecting road signs as well as to find the appropriate threshold value range for doing so. The efficiency of the cascade object detector in detecting road signs was tested under variations of speed and threshold values. The suggested system involved using video data to calculate the number of frames per second and creating an output file that contains the specified targets with their labels to use later in the final process (i.e., training stage). In the current research, two videos

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Nov 29 2021
Journal Name
Iraqi Journal Of Science
Foreground Object Detection and Separation Based on Region Contrast
...Show More Authors

Foreground object detection is one of the major important tasks in the field of computer vision which attempt to discover important objects in still image or image sequences or locate related targets from the scene. Foreground objects detection is very important for several approaches like object recognition, surveillance, image annotation, and image retrieval, etc. In this work, a proposed method has been presented for detection and separation foreground object from image or video in both of moving and stable targets. Comparisons with general foreground detectors such as background subtraction techniques our approach are able to detect important target for case the target is moving or not and can separate foreground object with high det

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jul 29 2020
Journal Name
Iraqi Journal Of Science
Automatic Vehicles Detection, Classification and Counting Techniques / Survey
...Show More Authors

Vehicle detection (VD) plays a very essential role in Intelligent Transportation Systems (ITS) that have been intensively studied within the past years. The need for intelligent facilities expanded because the total number of vehicles is increasing rapidly in urban zones. Traffic monitoring is an important element in the intelligent transportation system, which involves the detection, classification, tracking, and counting of vehicles. One of the key advantages of traffic video detection is that it provides traffic supervisors with the means to decrease congestion and improve highway planning. Vehicle detection in videos combines image processing in real-time with computerized pattern recognition in flexible stages. The real-time pro

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (4)
Scopus Crossref
Publication Date
Sun Aug 01 2021
Journal Name
Journal Of Engineering
Practical comparation of the accuracy and speed of YOLO, SSD and Faster RCNN for drone detection
...Show More Authors

Convolutional Neural Networks (CNN) have high performance in the fields of object recognition and classification. The strength of CNNs comes from the fact that they are able to extract information from raw-pixel content and learn features automatically. Feature extraction and classification algorithms can be either hand-crafted or Deep Learning (DL) based. DL detection approaches can be either two stages (region proposal approaches) detector or a single stage (non-region proposal approach) detector. Region proposal-based techniques include R-CNN, Fast RCNN, and Faster RCNN. Non-region proposal-based techniques include Single Shot Detector (SSD) and You Only Look Once (YOLO). We are going to compare the speed and accuracy of Faster RCNN,

... Show More
View Publication Preview PDF
Crossref (13)
Crossref
Publication Date
Sat Feb 27 2021
Journal Name
Iraqi Journal Of Science
Automatic Pectoral Muscles Detection and Removal in Mammogram Images
...Show More Authors
The main aim of the Computer-Aided Detection/Diagnosis system is to assist the radiologists in examining the digital mammograms. Digital mammogram is the most popular screening technique for early detection of breast cancer. One of the problems in breast mammogram analysis is the presence of pectoral muscles region with high intensity in the upper right or left side of most Media-Lateral Oblique views of mammogram images. Therefore, it is important to remove this pectoral muscle from the image for
... Show More
View Publication Preview PDF
Scopus (4)
Crossref (3)
Scopus Crossref
Publication Date
Thu Feb 28 2019
Journal Name
Iraqi Journal Of Science
Automatic Detection of Sunspots Size and Activity using Matlab
...Show More Authors

A study is made about the size and dynamic activity of sunspot using automatically detecting Matlab code ''mySS .m'' written for this purpose which mainly finds a good estimate about Sunspot diameter (in km). Theory of  the Sunspot size has been described using  equations, where the growth and decay phases and the area of Sunspot could be calculated. Two types of images, namely H-alpha and HMI magnetograms, have been implemented. The results are divided into four main parts. The first part is sunspot size automatic detection by the Matlab program. The second part is numerical calculations of Sunspot growth and decay phases. The third part is the calculation of  Sunspot area. The final part is to explain the Sunspot activit

... Show More
View Publication Preview PDF
Publication Date
Thu Oct 01 2020
Journal Name
Journal Of Engineering Science And Technology
Automatic voice activity detection using fuzzy-neuro classifier
...Show More Authors

Voice Activity Detection (VAD) is considered as an important pre-processing step in speech processing systems such as speech enhancement, speech recognition, gender and age identification. VAD helps in reducing the time required to process speech data and to improve final system accuracy by focusing the work on the voiced part of the speech. An automatic technique for VAD using Fuzzy-Neuro technique (FN-AVAD) is presented in this paper. The aim of this work is to alleviate the problem of choosing the best threshold value in traditional VAD methods and achieves automaticity by combining fuzzy clustering and machine learning techniques. Four features are extracted from each speech segment, which are short term energy, zero-crossing rate, auto

... Show More
View Publication Preview PDF
Scopus (4)
Scopus
Publication Date
Thu Sep 01 2022
Journal Name
Computers And Electrical Engineering
Automatic illness prediction system through speech
...Show More Authors

View Publication
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Fri Jan 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Automatic Detection and Recognition of Car Plates Based on Cascade Classifier
...Show More Authors

The study consists of video clips of all cars parked in the selected area. The studied camera height is1.5 m, and the video clips are 18video clips. Images are extracted from the video clip to be used for training data for the cascade method. Cascade classification is used to detect license plates after the training step. Viola-jones algorithm was applied to the output of the cascade data for camera height (1.5m). The accuracy was calculated for all data with different weather conditions and local time recoding in two ways. The first used the detection of the car plate based on the video clip, and the accuracy was 100%. The second is using the clipped images stored in the positive file, based on the training file (XML file), where the ac

... Show More
View Publication Preview PDF
Crossref