Preferred Language
Articles
/
ijs-1723
MHD Effect on Peristaltic Transport for Rabinowitsch Fluid through A Porous Medium in Cilia Channel
...Show More Authors

This paper is employed to discuss the effects of the magnetic field and heat transfer on the peristaltic flow of Rabinowitsch fluid through a porous medium in the cilia channel. The governing equations (mass, motion, and energy) are formulated and then the assumptions of long wavelength and low Reynold number are used for simplification. The velocity field, pressure gradient, temperature, and streamlines are obtained when the perturbation technique is applied to solve the nonlinear partial differential equations. The study shows that the velocity is decreased with increasing Hartmann number while it is decreased with increasing the porosity.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Sep 16 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Peristaltic Flow of the Bingham Plastic Fluid in a Curved Channel
...Show More Authors

    In this paper, we study the peristaltic transport of incompressible Bingham plastic fluid in a curved channel. The formulation of the problem is presented through, the regular perturbation technique for small values of  is used to find the final expression of stream function. The numerical solution of pressure rise per wave length is obtained through numerical integration because its analytical solution is impossible. Also the trapping phenomenon is analyzed. The effect of the variation of the physical parameters of the problem are discussed and illustrated graphically.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Journal Of Southwest Jiaotong University
Inclined Magnetic Field of Non-uniform and Porous Medium Channel on Couple Stress Peristaltic Flow and application in medical treatment (Knee Arthritis)
...Show More Authors

The present study analyzes the effect of couple stress fluid (CSF) with the activity of connected inclined magnetic field (IMF) of a non-uniform channel (NUC) through a porous medium (PM), taking into account the sliding speed effect on channel walls and the effect of nonlinear particle size, applying long wavelength and low Reynolds count estimates. The mathematical expressions of axial velocity, stream function, mechanical effect and increase in pressure have been analytically determined. The effect of the physical parameter is included in the present model in the computational results. The results of this algorithm have been presented in chart form by applying the mathematical program.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
Effects of the Rotation on the Mixed Convection Heat Transfer Analysis for the Peristaltic Transport of Viscoplastic Fluid in Asymmetric Channel
...Show More Authors

      In this paper, we study the impact of the variable rotation and different variable on mixed convection peristaltic flow of incompressible viscoplastic fluid. This is investigated in two dimensional asymmetric channel, such as the density, viscosity, rate flow, Grashof number, Bingham number, Brinkman number and tapered, on the mixed convection heat transfer analysis for the peristaltic transport of viscoplastic fluid with consideration small Reynolds number and long wavelength, peristaltic transport in asymmetric channel tapered horizontal channel and non-uniform boundary walls to possess different amplitude wave and phases. Perturbation technique is used to get series solutions. The effects of different values of these parame

... Show More
View Publication Preview PDF
Scopus (9)
Scopus Crossref
Publication Date
Thu Apr 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Effect of Rotation on the Heat Transfer of a Couple Stress Fluid in A Nonuniform Inclined Asymmetrical Channel with Inclined MHD
...Show More Authors

 The purpose of this research is to investigate the effects of rotation on heat transfer using
inclination magnetohydrodynamics for a couple-stress fluid in a non-uniform canal. When the
Reynolds number is low and the wavelength is long, math formulas are used to describe the stream
function, as well as the gradient of pressure, temperature, pressure rise and axial velocity per
wavelength, which have been calculated analytically. The many parameters in the current model
are assigned a definite set of values. It has been noticed that both the pressure rise and the pressure
gradient decrease with the rise of the rotation and couple stress, while they increase with an
increase in viscosity and Hartmann nu

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Hall and Joule's heating Influences on Peristaltic Transport of Bingham plastic Fluid with Variable Viscosity in an Inclined Tapered Asymmetric Channel
...Show More Authors

   This paper presents an investigation of peristaltic flow of Bingham plastic fluid in an inclined tapered asymmetric channel with variable viscosity. Taken into consideration Hall current, velocity, thermal slip conditions, Energy equation is modeled by taking Joule heating effect into consideration and by holding assumption of long wavelength and low Reynolds number approximation these equations simplified into couple of non-linear ordinary differential equations that solved using perturbation technique. Graphical analysis has been involved for various flow parameters emerging in the problem. We observed two opposite behaviors for Hall parameter and Hartman number on velocity axial and temperature curves.

View Publication Preview PDF
Crossref
Publication Date
Tue Aug 31 2021
Journal Name
Iraqi Journal Of Science
Heat Transfer Analysis and Magnetohydrodynamics Effect on Peristaltic Transport of Ree–Eyring Fluid in Rotating Frame
...Show More Authors

This paper discusses Ree–Eyring fluid’s peristaltic transport in a rotating frame and examines the impacts of Magnetohydrodynamics (MHD). The results deal with  systematically (analytically) applying each of the governing equations of Ree–Eyring fluid, the axial and secondary velocities, flow rate due to auxiliary stream, and bolus. The effects of some distinctive variables, such as Hartman number, heat source/sink, and amplitude ratio, are taken under consideration and illustrated through graphs.

View Publication Preview PDF
Scopus (5)
Scopus Crossref
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
Influence of the Induced Magnetic and Rotation on Mixed Convection Heat Transfer for the Peristaltic Transport of Bingham plastic Fluid in an Asymmetric Channel
...Show More Authors

     In  this paper,  the peristaltic flow under the impact  of  heat transfer, rotation and induced magnetic field of a two dimensional for the Bingham plastic fluid is discussed. The coupling among of momentum with rotational, energy and the induced magnetic field equations are achieved by the perturbation approximation method and the mathematica software to solve  equations that are nonlinear partial differential equations. The fluid moves in an asymmetric channel, and assumption the long wavelength and low Reynolds number, approximation are used for deriving a solution of the flow.  Expression of the axial velocity, temperature, pressure gradient, induced magnetic field, magnetic force, current density are developed the eff

... Show More
View Publication Preview PDF
Scopus (12)
Crossref (1)
Scopus Crossref
Publication Date
Wed Jul 01 2020
Journal Name
Journal Of Physics: Conference Series
“Impress of rotation and an inclined MHD on waveform motion of the non-Newtonian fluid through porous canal”
...Show More Authors
Abstract<p>Waveform flow of non-Newtonian fluid through a porous medium of the non-symmetric sloping canal under the effect of rotation and magnetic force, which has applied by the inclined way, have studied analytically and computed numerically. Slip boundary conditions on velocity distribution and stream function are used. We have taken the influence of heat and mass transfer in the consideration in our study. We carried out the mathematical model by using the presumption of low Reynolds number and small wave number. The resulting equations of motion, which are representing by the velocity profile and stream function distribution, solved by using the method of a domain decomposition analysis a</p> ... Show More
View Publication
Scopus (8)
Crossref (1)
Scopus Crossref
Publication Date
Sun Apr 26 2020
Journal Name
Iraqi Journal Of Science
Impacts of Heat and Mass Transfer on Magneto Hydrodynamic Peristaltic Flow Having Temperature-dependent Properties in an Inclined Channel Through Porous Media
...Show More Authors

In this paper, we study the impacts of variable viscosity , heat and mass transfer on magneto hydrodynamic (MHD) peristaltic flow in a asymmetric tapered inclined channel with porous medium . The viscosity is considered as a function of temperature. The slip conditions at the walls were taken into consideration. Small
Reynolds number and the long wavelength approximations were used to simplify the governing equations. A comparison between the two velocities in cases of slip and no-slip was plotted. It was observed that the behavior of the velocity differed in the two applied models for some parameters. Mathematica software was used to estimate the exact solutions of temperature and concentration profiles. The resolution of the equatio

... Show More
View Publication Preview PDF
Scopus (13)
Crossref (1)
Scopus Crossref
Publication Date
Tue May 30 2023
Journal Name
Iraqi Journal Of Science
Mathematical Modelling for Peristaltic Flow of Sutterby Fluid Through Tube under the Effect of Endoscope
...Show More Authors

     In this work, the mathematical modelling of peristaltic transport for incompressible Sutterby fluid through the cavity between coaxial tubes where the inner tube is fixed and the outer tube has sinusoidal rhythmic fluctuations along the channel’s walls is presented. Under the assumption of long wavelength and the low Reynolds number, the governing equations (motion, temperature, and concentration) are illustrated in cylindrical coordinates. The analytical solution for the temperature and concentration of the fluid flow is obtained using Mathematica 11.3, whereas the perturbation technique is employed to find the closed form of the velocity profile. The variation of the axial velocity, stream function, temperat

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref