This paper presents an investigation of peristaltic flow of Bingham plastic fluid in an inclined tapered asymmetric channel with variable viscosity. Taken into consideration Hall current, velocity, thermal slip conditions, Energy equation is modeled by taking Joule heating effect into consideration and by holding assumption of long wavelength and low Reynolds number approximation these equations simplified into couple of non-linear ordinary differential equations that solved using perturbation technique. Graphical analysis has been involved for various flow parameters emerging in the problem. We observed two opposite behaviors for Hall parameter and Hartman number on velocity axial and temperature curves.
This paper studies the influence of an inclined magnetic field on peristaltic transport of incompressible Bingham plastic fluid in an inclined symmetric channel with heat transfer and mass transfer. Slip conditions for heat transfer and concentration are employed. The formulation of the problem is presented through, the regular perturbation technique for small Bingham number Bn is used to find the final expression of stream
function, the flow rate, heat distribution and concentration distribution. The numerical solution of pressure rise per wave length is obtained through numerical integration because its analytical solution is impossible. Also the trapping phenomenon is analyzed. The effe
In this paper, the peristaltic flow under the impact of heat transfer, rotation and induced magnetic field of a two dimensional for the Bingham plastic fluid is discussed. The coupling among of momentum with rotational, energy and the induced magnetic field equations are achieved by the perturbation approximation method and the mathematica software to solve equations that are nonlinear partial differential equations. The fluid moves in an asymmetric channel, and assumption the long wavelength and low Reynolds number, approximation are used for deriving a solution of the flow. Expression of the axial velocity, temperature, pressure gradient, induced magnetic field, magnetic force, current density are developed the eff
... Show MoreIn this paper, we discuss a fluid problem that has wide applications in biomechanics, polymer industries, and biofluids. We are concerned here with studying the combined effects of porous medium and heat transfer on MHD non-Newtonian Jeffery fluid which flows through a two dimensional asymmetric, inclined tapered channel. Base equations, represented by mass conservation, motion, energy and concentration conservation, were formulated first in a fixed frame and then transformed into a moving frame. By holding the assumptions of “long wavelength and low Reynolds number†these physical equations were simplified into differential equations. Approximate solutions for the velocity profile, stream function, and temperature profile we
... Show MoreDuring this article, we have a tendency to show the peristaltic activity of magnetohydrodynamics flow of carreau fluid with heat transfer influence in an inclined tapered asymmetric channel through porous medium by exploitation the influence of non-slip boundary conditions. The tapered asymmetric channel is often created because of the intrauterine fluid flow induced by myometrial contraction and it had been simulated by asymmetric peristaltic fluid flow in an exceedingly two dimensional infinite non uniform channel, this fluid is known as hereby carreau fluid, conjointly we are able to say that one amongst carreau's applications is that the blood flow within the body of human. Industrial field, silicon oil is an example of carreau
... Show MoreThe properties of capturing of peristaltic flow to a chemically reacting couple stress fluid through an inclined asymmetric channel with variable viscosity and various boundaries are investigated. we have addressed the impacts of variable viscosity, different wave forms, porous medium, heat and mass transfer for peristaltic transport of hydro magnetic couple stress liquid in inclined asymmetric channel with different boundaries. Moreover, The Fluid viscosity assumed to vary as an exponential function of temperature. Effects of almost flow parameters are studied analytically and computed. An rising in the temperature and concentration profiles return to heat and mass transfer Biot numbers. Noteworthy, the Soret and Dufour number effect resul
... Show MoreIn this paper, we study the peristaltic transport of incompressible Bingham plastic fluid in a curved channel. The formulation of the problem is presented through, the regular perturbation technique for small values of is used to find the final expression of stream function. The numerical solution of pressure rise per wave length is obtained through numerical integration because its analytical solution is impossible. Also the trapping phenomenon is analyzed. The effect of the variation of the physical parameters of the problem are discussed and illustrated graphically.
A mathematical model was created to study the influences of Hall current and Joule heating with wall slip conditions on peristaltic motion of Rabinowitsch fluid model through a tapered symmetric channel with Permeable Walls. The governing equations are simplified under low Reynolds number and the long-wavelength approximations. The perturbation method is used to solve the momentum equation. The physiological phenomena are studied for a certain set of pertinent parameters. The effects offered here show that the presence of the hall parameter, coefficient of pseudo-plasticity, and Hartman number impact the flow of the fluid model. Additional, study reveals that a height in the Hall parameter and the velocity slip parameter incre
... Show MoreThis paper is devoted to the study of the peristaltic transport of viscoelastic non-Newtonian fluids with fractional Maxwell model in an inclined channel. Approximate analytical solutions have been constructed using Adomain decomposition method under the assumption of long wave boundary layer type approximation and low Reynolds number. The effect of each of relaxation time, fractional parameters, Reynolds number, Froude number, inclination of channel and amplitude on the pressure difference, friction force and stream function along one wavelength are received and analyzed.
This paper is devoted to the study of the peristaltic transport of viscoelastic non-Newtonian fluids with fractional Maxwell model in an inclined channel. Approximate analytical solutions have been constructed using Adomain decomposition method under the assumption of long wave boundary layer type approximation and low Reynolds number. The effect of each of relaxation time, fractional parameters, Reynolds number, Froude number, inclination of channel and amplitude on the pressure difference, friction force and stream function along one wavelength are received and analyzed.