A graph is a structure amounting to a set of objects in which some pairs of the objects are in some sense related. The objects correspond to mathematical abstractions called vertices (also called nodes or points) and each of the related pairs of vertices is called an edge (also called link or line). A directed graph is a graph in which edges have orientation. A simple graph is a graph that does not have more than one edge between any two vertices and no edge starts and ends at the same vertex. For a simple undirected graph G with order n, and let denotes its complement. Let δ(G), ∆(G) denotes the minimum degree and maximum degree of G respectively. The complement degree polynomial of G is the polynomial CD[G,x]= , where C
... Show MoreLet R be a commutative ring with identity 1 and M be a unitary left R-module. A submodule N of an R-module M is said to be approximately pure submodule of an R-module, if for each ideal I of R. The main purpose of this paper is to study the properties of the following concepts: approximately pure essentialsubmodules, approximately pure closedsubmodules and relative approximately pure complement submodules. We prove that: when an R-module M is an approximately purely extending modules and N be Ap-puresubmodulein M, if M has the Ap-pure intersection property then N is Ap purely extending.
Let be a right module over a ring with identity. The semisecond submodules are studied in this paper. A nonzero submodule of is called semisecond if for each . More information and characterizations about this concept is provided in our work.
The concept of St-Polyform modules, was introduced and studied by Ahmed in [1], where a module M is called St-polyform, if for every submodule N of M and for any homomorphism ð‘“:N M; kerð‘“ is St-closed submodule in N. The novelty of this paper is to dualize this class of modules, the authors call it CSt-polyform modules, and according to this dualizations, some results which appeared in [1] are dualized for example we prove that in the class of hollow modules, every CSt-polyform module is coquasi-Dedekind. In addition, several important properties of CSt-polyform module are established, and other characterization of CSt-polyform is given. Moreover, many relationships of CSt-polyform modules with other related concepts are
... Show MoreLet L be a commutative ring with identity and let W be a unitary left L- module. A submodule D of an L- module W is called s- closed submodule denoted by D ≤sc W, if D has no proper s- essential extension in W, that is , whenever D ≤ W such that D ≤se H≤ W, then D = H. In this paper, we study modules which satisfies the ascending chain conditions (ACC) and descending chain conditions (DCC) on this kind of submodules.
M is viewed as a right module over an arbitrary ring R with identity. The essential second modules is defined in this paper. We call M is essential second when for any a bilongs to R, either Ma = 0 or Ma <e M. Number of conclusions are gained and some connections between these modules and other related modules are studied.
Let be a non-zero right module over a ring with identity. The weakly second submodules is studied in this paper. A non-zero submodule of is weakly second Submodule when , where , and is a submodule of implies either or . Some connections between these modules and other related modules are investigated and number of conclusions and characterizations are gained.
Let R be associative; ring; with an identity and let D be unitary left R- module; . In this work we present semiannihilator; supplement submodule as a generalization of R-a- supplement submodule, Let U and V be submodules of an R-module D if D=U+V and whenever Y≤ V and D=U+Y, then annY≪R;. We also introduce the the concept of semiannihilator -supplemented ;modules and semiannihilator weak; supplemented modules, and we give some basic properties of this conseptes
Let R be a commutative ring with identity, and let M be a unitary R-module. We introduce a concept of almost bounded submodules as follows: A submodule N of an R-module M is called an almost bounded submodule if there exists xÃŽM, xÃN such that annR(N)=annR(x).
In this paper, some properties of almost bounded submodules are given. Also, various basic results about almost bounded submodules are considered.
Moreover, some relations between almost bounded submodules and other types of modules are considered.
Let R be associative; ring; with an identity and let D be unitary left R- module; . In this work we present semiannihilator; supplement submodule as a generalization of R-a- supplement submodule, Let U and V be submodules of an R-module D if D=U+V and whenever Y≤ V and D=U+Y, then annY≪R;. We also introduce the the concept of semiannihilator -supplemented ;modules and semiannihilator weak; supplemented modules, and we give some basic properties of this conseptes.