Preferred Language
Articles
/
ijs-1012
On Weakly Second Submodules

    Let  be a non-zero right module over a ring  with identity. The weakly second submodules is studied in this paper. A non-zero submodule  of   is weakly second Submodule when  ,  where ,  and  is a submodule of  implies either  or   . Some connections between these modules and other related modules are investigated and number of conclusions  and characterizations are gained.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jan 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Weakly Nearly Prime Submodules

        In this article, unless otherwise established, all rings are commutative with identity and all modules are unitary left R-module. We offer this concept of WN-prime as new generalization of weakly prime submodules. Some basic properties of weakly nearly prime submodules are given. Many characterizations, examples of this concept are stablished.

Crossref
View Publication Preview PDF
Publication Date
Mon Jan 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Pseudo Weakly Closed Submodules and Related Concepts

Let  be a commutative ring with identity, and  be a unitary left -module. In this paper we introduce the concept pseudo weakly closed submodule as a generalization of -closed submodules, where a submodule  of an -module  is called a pseudo weakly closed submodule, if for all , there exists a -closed submodule  of  with  is a submodule of  such that . Several basic properties, examples and results of pseudo weakly closed submodules are given. Furthermore the behavior of pseudo weakly closed submodules in class of multiplication modules are studied. On the other hand modules with chain conditions on pseudo weakly closed submodules are established. Also, the relationships of  pseudo weakly closed

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Aug 09 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Weakly Prime Submodules

Let R be a commutative ring with unity and let M be a left R-module. We define a proper submodule N of M to be a weakly prime if whenever  r  R,  x  M, 0  r x  N implies  x  N  or  r  (N:M). In fact this concept is a generalization of the concept weakly  prime ideal, where a proper ideal P of R is called a weakly prime, if for all a, b  R, 0  a b  P implies a  P or b  P. Various properties of weakly prime submodules are considered. 

View Publication Preview PDF
Publication Date
Tue Apr 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Weakly Approximaitly Quasi-Prime Submodules And Related Concepts

           Let R be  commutative Ring , and let T be  unitary left .In this paper ,WAPP-quasi prime submodules are introduced as  new generalization of Weakly quasi prime submodules , where  proper submodule C of an R-module T is called WAPP –quasi prime submodule of T, if whenever 0≠rstϵC, for r, s ϵR , t ϵT, implies that either  r tϵ C +soc   or  s tϵC +soc  .Many examples of characterizations and basic properties are given . Furthermore several characterizations of WAPP-quasi prime submodules in the class of multiplication modules are established.

Crossref
View Publication Preview PDF
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Weakly Small Smiprime Submodules
Abstract<p>Let <italic>R</italic> be a commutative ring with an identity, and <italic>G</italic> be a unitary left <italic>R</italic>-module. A proper submodule <italic>H</italic> of an <italic>R</italic>-module <italic>G</italic> is called semiprime if whenever <italic>a ∈ R, y ∈ G, n ∈ Z</italic> <sup>+</sup> and <italic>a<sup>n</sup>y ∈ H</italic>, then <italic>ay ∈ H</italic>. We say that a properi submodule <italic>H</italic> of an <italic>R</italic>-module <italic>G</italic> is a weakly small semiprime, if whenever <ita></ita></p> ... Show More
Scopus Crossref
Publication Date
Tue Nov 13 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
WE-Prime Submodules and WE-Semi-Prime Submodules

"In this article, "we introduce the concept of a WE-Prime submodule", as a stronger form of a weakly prime submodule". "And as a "generalization of WE-Prime submodule", we introduce the concept of WE-Semi-Prime submodule, which is also a stronger form of a weakly semi-prime submodule". "Various basic properties of these two concepts are discussed. Furthermore, the relationships between "WE-Prime submodules and weakly prime submodules" and studied". "On the other hand the relation between "WE-Prime submodules and WE-Semi-Prime submodules" are consider". "Also" the relation of "WE-Sime-Prime submodules and weakly semi-prime submodules" are explained. Behind that, some characterizations of these concepts are investigated".

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Nov 13 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
For Some Results of Semisecond Submodules

  Let â„› be a commutative ring with unity and let ℬ be a unitary R-module. Let ℵ be a proper submodule of ℬ, ℵ is called semisecond submodule if for any r∈ℛ, r≠0, n∈Z+, either rnℵ=0 or rnℵ=rℵ.

In this work, we introduce the concept of semisecond submodule and confer numerous properties concerning with this notion. Also we study semisecond modules as a popularization of second modules, where an ℛ-module ℬ is called semisecond, if ℬ is semisecond submodul of ℬ.

Crossref
View Publication Preview PDF
Publication Date
Mon Apr 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Semisecond Submodules

      Let  be a right module over a ring  with identity. The semisecond submodules are studied in this paper. A nonzero submodule  of   is called semisecond if    for each . More information and characterizations about this concept is provided in our work.

Crossref
View Publication Preview PDF
Publication Date
Wed May 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Coprime Submodules

  Let R be a commutative ring with unity and let M be a unitary R-module. Let N be a proper submodule of M, N is called a coprime submodule if   is a coprime R-module, where   is a coprime R-module if for any r  R, either O      r or     r .         In this paper we study coprime submodules and give many properties related with this concept.

View Publication Preview PDF
Publication Date
Sun Sep 29 2019
Journal Name
Iraqi Journal Of Science
I-Semiprime Submodules

 Let  be a commutative ring with identity and a fixed ideal of  and  be an unitary -module.We say that a proper submodule  of  is -semi prime submodule if with . In this paper, we investigate some properties of this class of submodules. Also, some characterizations of -semiprime submodules will be given, and we show that under some assumptions -semiprime submodules and semiprime submodules are coincided.

Scopus (2)
Crossref (2)
Scopus Crossref
View Publication Preview PDF