Preferred Language
Articles
/
ijs-1461
R-annihilator-Coessential and R-annihilator-Coclosed Submodules

Let be a unitary left R-module on associative ring with identity. A submodule of is called -annihilator small if , where is a submodule of , implies that ann( )=0, where ann( ) indicates annihilator of in . In this paper, we introduce the concepts of -annihilator-coessential and - annihilator - coclosed submodules. We give many properties related with these types of submodules.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jul 01 2021
Journal Name
Journal Of Physics: Conference Series
J-Small Semiprime Submodules
Abstract<p>Let <italic>R</italic> be a commutative ring with identity and <italic>Y</italic> be an unitary <italic>R</italic>-module. We say a non-zero submodule <italic>s</italic> of <italic>Y</italic> is a <italic>J –</italic> small semiprime if and only if for whenever <italic>i</italic> ∈ <italic>R, y ∈ Y,(Y)</italic> is small in <italic>Y</italic> and <italic>i<sup>2</sup>y</italic> ∈ <italic>S</italic> + <italic>Rad (Y)</italic> implies <italic>iy</italic> ∈ <italic>S.</italic> In this paper, we investigate some properties and chara</p> ... Show More
Scopus Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Weakly Small Smiprime Submodules
Abstract<p>Let <italic>R</italic> be a commutative ring with an identity, and <italic>G</italic> be a unitary left <italic>R</italic>-module. A proper submodule <italic>H</italic> of an <italic>R</italic>-module <italic>G</italic> is called semiprime if whenever <italic>a ∈ R, y ∈ G, n ∈ Z</italic> <sup>+</sup> and <italic>a<sup>n</sup>y ∈ H</italic>, then <italic>ay ∈ H</italic>. We say that a properi submodule <italic>H</italic> of an <italic>R</italic>-module <italic>G</italic> is a weakly small semiprime, if whenever <ita></ita></p> ... Show More
Scopus Crossref
Publication Date
Wed Aug 09 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Weakly Prime Submodules

Let R be a commutative ring with unity and let M be a left R-module. We define a proper submodule N of M to be a weakly prime if whenever  r  R,  x  M, 0  r x  N implies  x  N  or  r  (N:M). In fact this concept is a generalization of the concept weakly  prime ideal, where a proper ideal P of R is called a weakly prime, if for all a, b  R, 0  a b  P implies a  P or b  P. Various properties of weakly prime submodules are considered. 

View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Discrete Mathematical Sciences &amp; Cryptography
On gamma T_pure submodules

A gamma T_ pure sub-module also the intersection property for gamma T_pure sub-modules have been studied in this action. Different descriptions and discuss some ownership, as Γ-module Z owns the TΓ_pure intersection property if and only if (J2 ΓK ∩ J^2  ΓF)=J^2 Γ(K ∩ F) for each Γ-ideal J and for all TΓ_pure K, and F in Z Q/P is TΓ_pure sub-module in Z/P, if P in Q.

Scopus Clarivate Crossref
View Publication
Publication Date
Fri May 01 2015
Journal Name
Journal Of Physics: Conference Series
Scopus (1)
Scopus
Publication Date
Sat Apr 30 2022
Journal Name
European Journal Of Pure And Applied Mathematics
Publication Date
Sun Jan 26 2020
Journal Name
Journal Of Global Pharma Technology
Synthesis, Characterization of 2-azido-4-(azido (2-azido-2-( azido carbonyl)-1,3-dioxoian-4-yl)methyl)– 5-((R-azido (hydroxyl) methyl- 1,3-dioxole-2-carbonyl azide. ethanol. hydrate (L-AZD) with Some Metal Complexes

The reaction oisolated and characterized by elemental analysis (C,H,N) , 1H-NMR, mass spectra and Fourier transform (Ft-IR). The reaction of the (L-AZD) with: [VO(II), Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)], has been investigated and was isolated as tri nuclear cluster and characterized by: Ft-IR, U. v- Visible, electrical conductivity, magnetic susceptibilities at 25 Co, atomic absorption and molar ratio. Spectroscopic evidence showed that the binding of metal ions were through azide and carbonyl moieties resulting in a six- coordinating metal ions in [Cr (III), Mn (II), Co (II) and Ni (II)]. The Vo (II), Cu (II), Zn (II), Cd (II) and Hg (II) were coordinated through azide group only forming square pyramidal

... Show More
Publication Date
Thu Apr 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Extend Nearly Pseudo Quasi-2-Absorbing Submodules (II)

The concept of the Extend Nearly Pseudo Quasi-2-Absorbing submodules was recently introduced by Omar A. Abdullah and Haibat K. Mohammadali in 2022, where he studies this concept and it is relationship to previous generalizationsm especially  2-Absorbing submodule and Quasi-2-Absorbing submodule, in addition to studying the most important Propositions, charactarizations and Examples. Now in this research, which is considered a continuation of the definition that was presented earlier, which is the Extend Nearly Pseudo Quasi-2-Absorbing submodules, we have completed the study of this concept in multiplication modules. And the relationship between the Extend Nearly Pseudo Quasi-2-Absorbing submodule and Extend Nearly Pseudo Quasi-2-Abs

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon Jul 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On the Space of Primary La-submodules

     Suppose that F is a reciprocal ring which has a unity and suppose that H is an F-module. We topologize La-Prim(H), the set of all primary La-submodules of H , similar to that for FPrim(F), the spectrum of fuzzy primary ideals of F, and examine the characteristics of this topological space. Particularly, we will research the relation between La-Prim(H) and La-Prim(F/ Ann(H)) and get some results.

Crossref
View Publication Preview PDF
Publication Date
Wed Jul 05 2023
Journal Name
Thesis
P-Rational Submodules and Certain Types of Polyform Modules

The main objective of this thesis is to study new concepts (up to our knowledge) which are P-rational submodules, P-polyform and fully polyform modules. We studied a special type of rational submodule, called the P-rational submodule. A submodule N of an R-module M is called P-rational (Simply, N≤_prM), if N is pure and Hom_R (M/N,E(M))=0 where E(M) is the injective hull of M. Many properties of the P-rational submodules were investigated, and various characteristics were given and discussed that are analogous to the results which are known in the concept of the rational submodule. We used a P-rational submodule to define a P-polyform module which is contained properly in the polyform module. An R-module M is called P-polyform if every es

... Show More