The main purpose of this paper is to investigate some results. When h is ï‡ -(ï¬ ,δ) – Derivation on prime Γ-near-ring G and K is a nonzero semi-group ideal of G, then G is commutative .
This paper focuses on developing a self-starting numerical approach that can be used for direct integration of higher-order initial value problems of Ordinary Differential Equations. The method is derived from power series approximation with the resulting equations discretized at the selected grid and off-grid points. The method is applied in a block-by-block approach as a numerical integrator of higher-order initial value problems. The basic properties of the block method are investigated to authenticate its performance and then implemented with some tested experiments to validate the accuracy and convergence of the method.
In this article, the nonlinear problem of Jeffery-Hamel flow has been solved analytically and numerically by using reliable iterative and numerical methods. The approximate solutions obtained by using the Daftardar-Jafari method namely (DJM), Temimi-Ansari method namely (TAM) and Banach contraction method namely (BCM). The obtained solutions are discussed numerically, in comparison with other numerical solutions obtained from the fourth order Runge-Kutta (RK4), Euler and previous analytic methods available in literature. In addition, the convergence of the proposed methods is given based on the Banach fixed point theorem. The results reveal that the presented methods are reliable, effective and applicable to solve other nonlinear problems.
... Show MoreCancer is one of the dangerous diseases that afflict a person through injury to cells and tissues in the body, where a person is vulnerable to infection in any age group, and it is not easy to control and multiply between cells and spread to the body. In spite of the great progress in medical studies interested in this aspect, the options for those with this disease are few and difficult, as they require significant financial costs for health services and for treatment that is difficult to provide.
This study dealt with the determinants of liver cancer by relying on the data of cancerous tumours taken from the Iraqi Center for Oncology in the Ministry of Health 2017. Survival analysis has been used as a m
... Show MoreIn this paper the full stable Banach gamma-algebra modules, fully stable Banach gamma-algebra modules relative to ideal are introduced. Some properties and characterizations of these classes of full stability are studied.
Throughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ? W ? M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of ri
... Show MoreThroughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ⊊ W ⊆ M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of rings
... Show MoreIn this article, the numerical and approximate solutions for the nonlinear differential equation systems, represented by the epidemic SIR model, are determined. The effective iterative methods, namely the Daftardar-Jafari method (DJM), Temimi-Ansari method (TAM), and the Banach contraction method (BCM), are used to obtain the approximate solutions. The results showed many advantages over other iterative methods, such as Adomian decomposition method (ADM) and the variation iteration method (VIM) which were applied to the non-linear terms of the Adomian polynomial and the Lagrange multiplier, respectively. Furthermore, numerical solutions were obtained by using the fourth-orde Runge-Kutta (RK4), where the maximum remaining errors showed th
... Show MoreIn this paper, we estimate the survival function for the patients of lung cancer using different nonparametric estimation methods depending on sample from complete real data which describe the duration of survivor for patients who suffer from the lung cancer based on diagnosis of disease or the enter of patients in a hospital for period of two years (starting with 2012 to the end of 2013). Comparisons between the mentioned estimation methods has been performed using statistical indicator mean squares error, concluding that the survival function for the lung cancer by using shrinkage method is the best
In this paper, the concept of soft closed groups is presented using the soft ideal pre-generalized open and soft pre-open, which are -ᶅ- - -closed sets " -closed", Which illustrating several characteristics of these groups. We also use some games and - Separation Axiom, such as (Ʈ0, Ӽ, ᶅ) that use many tables and charts to illustrate this. Also, we put some proposals to study the relationship between these games and give some examples.
Some authors studied modules with annihilator of every nonzero submodule is prime, primary or maximal. In this paper, we introduce and study annsemimaximal and coannsemimaximal modules, where an R-module M is called annsemimaximal (resp. coannsemimaximal) if annRN (resp. ) is semimaximal ideal of R for each nonzero submodule N of M.