Despite ample research on soft linear spaces, there are many other concepts that can be studied. We introduced in this paper several new concepts related to the soft operators, such as the invertible operator. We investigated some properties of this kind of operators and defined the spectrum of soft linear operator along with a number of concepts related with this definition; the concepts of eigenvalue, eigenvector, eigenspace are defined. Finally the spectrum of the soft linear operator was divided into three disjoint parts.
in this paper we adopted ways for detecting edges locally classical prewitt operators and modification it are adopted to perform the edge detection and comparing then with sobel opreators the study shows that using a prewitt opreators
The precipitation of calcite induced via microorganisms (MICP) is a technique that has been developed as an innovative sustainable ground improvement method utilizing ureolytic bacteria to soil strengthening and stabilization. Locally isolated Bacillus Sonorensis from Iraqi soil samples were found to have high abilities in producing urease. This study aims to use the MICP technique in improving the undrained shear strength of soft clay soil using two native urease producing bacteria that help in the precipitation of calcite to increase the cementation between soil particles. Three concentrations of each of the locally prepared Bacillus sonorensis are used in this study for cementation reagent (0.25M, 0.5M, and 1M) during
... Show MoreR. Vasuki [1] proved fixed point theorems for expansive mappings in Menger spaces. R. Gujetiya and et al [2] presented an extension of the main result of Vasuki, for four expansive mappings in Menger space. In this article, an important lemma is given to prove that the iteration sequence is Cauchy under suitable condition in Menger probabilistic G-metric space (shortly, MPGM-space). And then, used to obtain three common fixed point theorems for expansive type mappings.
In this paper we introduce a new type of functions called the generalized regular
continuous functions .These functions are weaker than regular continuous functions and
stronger than regular generalized continuous functions. Also, we study some
characterizations and basic properties of generalized regular continuous functions .Moreover
we study another types of generalized regular continuous functions and study the relation
among them
In this paper, we introduce and study the concept of a new class of generalized closed set which is called generalized b*-closed set in topological spaces ( briefly .g b*-closed) we study also. some of its basic properties and investigate the relations between the associated topology.
This paper is concerned with introducing and studying the first new approximation operators using mixed degree system and second new approximation operators using mixed degree system which are the core concept in this paper. In addition, the approximations of graphs using the operators first lower and first upper are accurate then the approximations obtained by using the operators second lower and second upper sincefirst accuracy less then second accuracy. For this reason, we study in detail the properties of second lower and second upper in this paper. Furthermore, we summarize the results for the properties of approximation operators second lower and second upper when the graph G is arbitrary, serial 1, serial 2, reflexive, symmetric, tra
... Show MoreThe goal of this study is to provide a new explicit iterative process method approach for solving maximal monotone(M.M )operators in Hilbert spaces utilizing a finite family of different types of mappings as( nonexpansive mappings,resolvent mappings and projection mappings. The findings given in this research strengthen and extend key previous findings in the literature. Then, utilizing various structural conditions in Hilbert space and variational inequality problems, we examine the strong convergence to nearest point projection for these explicit iterative process methods Under the presence of two important conditions for convergence, namely closure and convexity. The findings reported in this research strengthen and extend
... Show MoreLet
This research presents the concepts of compatibility and edge spaces in