Preferred Language
Articles
/
ijs-1306
A Study on n-Derivation in Prime Near – Rings
...Show More Authors

The main purpose of this paper is to show that zero symmetric prime near-rings, satisfying certain identities on n-derivations, are commutative rings.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Derivable Maps of Prime Rings
...Show More Authors

Our active aim in this paper is to prove the following Let Ŕ be a ring having an
idempotent element e(e  0,e 1) . Suppose that R is a subring of Ŕ which
satisfies:
(i) eR  R and Re  R .
(ii) xR  0 implies x  0 .
(iii ) eRx  0 implies x  0( and hence Rx  0 implies x  0) .
(iv) exeR(1 e)  0 implies exe  0 .
If D is a derivable map of R satisfying D(R )  R ;i, j 1,2. ij ij Then D is
additive. This extend Daif's result to the case R need not contain any non-zero
idempotent element.

View Publication Preview PDF
Publication Date
Sun Mar 05 2017
Journal Name
Baghdad Science Journal
Notes on Traces of a Symmetric Generalized (?, ?)-Biderivations and Commutativity in Prime Rings
...Show More Authors

Let R be a 2-torision free prime ring and ?, ?? Aut(R). Furthermore, G: R×R?R is a symmetric generalized (?, ?)-Biderivation associated with a nonzero (?, ?)-Biderivation D. In this paper some certain identities are presented satisfying by the traces of G and D on an ideal of R which forces R to be commutative

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Tue Sep 29 2020
Journal Name
Iraqi Journal Of Science
A Jordan Higher Reverse Left (resp. right) Centralizer on Prime -Rings
...Show More Authors

In this paper,  we introduce the concepts of  higher reverse left (resp.right)   centralizer, Jordan higher reverse left (resp. right) centralizer, and Jordan triple higher reverse left (resp. right) centralizer of  G-rings. We prove that every Jordan higher reverse left (resp. right) centralizer of a 2-torsion free prime G-ring M is a higher reverse left (resp. right) centralizer of  M.

View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Sat Oct 30 2021
Journal Name
Iraqi Journal Of Science
N Sequence Prime Ideals
...Show More Authors

    In this paper, the concepts of -sequence prime ideal and -sequence quasi prime ideal are introduced. Some properties of such ideals are investigated. The relations between -sequence prime ideal and each of primary ideal, -prime ideal, quasi prime ideal, strongly irreducible ideal, and closed ideal, are studied. Also, the ideals of a principal ideal domain are classified into quasi prime ideals and -sequence quasi prime ideals.

View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Wed Jul 17 2019
Journal Name
Iraqi Journal Of Science
On Commutativity of Prime and Semiprime - Rings with Reverse Derivations
...Show More Authors

Let M be a weak Nobusawa -ring and γ be a non-zero element of Γ. In this paper, we introduce concept of k-reverse derivation, Jordan k-reverse derivation, generalized k-reverse derivation, and Jordan generalized k-reverse derivation of Γ-ring, and γ-homomorphism, anti-γ-homomorphism of M. Also, we give some commutattivity conditions on γ-prime Γ-ring and γ-semiprime Γ-ring .

View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Wed Jan 12 2022
Journal Name
Iraqi Journal Of Science
Jordan Permuting 3-Derivations of Prime Rings
...Show More Authors

The main purpose of this work is to generalize Daif's result by introduceing the concept of Jordan (α β permuting 3-derivation on Lie ideal and generalize these result by introducing the concept of generalized Jordan (α β permuting 3-derivation 

View Publication Preview PDF
Publication Date
Sun Sep 04 2011
Journal Name
Baghdad Science Journal
Jordan left (?,?) -derivations Of ?-prime rings
...Show More Authors

It was known that every left (?,?) -derivation is a Jordan left (?,?) – derivation on ?-prime rings but the converse need not be true. In this paper we give conditions to the converse to be true.

View Publication Preview PDF
Crossref
Publication Date
Wed Feb 16 2022
Journal Name
Iraqi Journal Of Science
Generalized Permuting 3-Derivations of Prime Rings
...Show More Authors

This work generalizes Park and Jung's results by introducing the concept of generalized permuting 3-derivation on Lie ideal.

View Publication Preview PDF
Publication Date
Wed Aug 31 2022
Journal Name
Iraqi Journal Of Science
Generalized Commuting Mapping in Prime and Semiprime Rings
...Show More Authors

     Let R be an associative ring. The essential purpose of the present paper is to introduce the concept of generalized commuting mapping of R. Let U be a non-empty subset of R, a mapping   : R  R is called a generalized commuting mapping on U if there exist a mapping :R R such that =0, holds for all U. Some results concerning the new concept are presented.

View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Dec 05 2010
Journal Name
Baghdad Science Journal
Jordan ?-Centralizers of Prime and Semiprime Rings
...Show More Authors

The purpose of this paper is to prove the following result: Let R be a 2-torsion free ring and T: R?R an additive mapping such that T is left (right) Jordan ?-centralizers on R. Then T is a left (right) ?-centralizer of R, if one of the following conditions hold (i) R is a semiprime ring has a commutator which is not a zero divisor . (ii) R is a non commutative prime ring . (iii) R is a commutative semiprime ring, where ? be surjective endomorphism of R . It is also proved that if T(x?y)=T(x)??(y)=?(x)?T(y) for all x, y ? R and ?-centralizers of R coincide under same condition and ?(Z(R)) = Z(R) .

View Publication Preview PDF
Crossref