This paper include the problem of segmenting an image into regions represent (objects), segment this object by define boundary between two regions using a connected component labeling. Then develop an efficient segmentation algorithm based on this method, to apply the algorithm to image segmentation using different kinds of images, this algorithm consist four steps at the first step convert the image gray level the are applied on the image, these images then in the second step convert to binary image, edge detection using Canny edge detection in third Are applie the final step is images. Best segmentation rates are (90%) obtained when using the developed algorithm compared with (77%) which are obtained using (ccl) before enhancement.
Agriculture improvement is a national economic issue that extremely depends on productivity. The explanation of disease detection in plants plays a significant role in the agriculture field. Accurate prediction of the plant disease can help treat the leaf as early as possible, which controls the economic loss. This paper aims to use the Image processing techniques with Convolutional Neural Network (CNN). It is one of the deep learning techniques to classify and detect plant leaf diseases. A publicly available Plant village dataset was used, which consists of 15 classes, including 12 diseases classes and 3 healthy classes. The data augmentation techniques have been used. In addition to dropout and weight reg
... Show MoreA shocking third species emerged from a family of coronaviruses (CoV) in late 2019 following viruses causing SARS (Severe Acute Respiratory Syndrome-CoV) in 2003 and MERS (Middle East Respiratory Syndrome-CoV) in 2012; it’s a novel coronavirus now called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; formerly called 2019-nCoV). First emerging in China, it has spread rapidly across the globe, giving rise to significant social and economic costs and imposing severe strain on healthcare systems. Since many attempts to control viral spread has been futile, the only old practice of containment including city lockdown and social distancing are working to some extent. Unfortunately, specific antiviral drugs and vaccines remain u
... Show MoreThis paper presents a complete design and implementation of a monitoring system for the operation of the three-phase induction motors. This system is built using a personal computer and two types of sensors (current, vibration) to detect some of the mechanical faults that may occur in the motor. The study and examination of several types of faults including (ball bearing and shaft misalignment faults) have been done through the extraction of fault data by using fast Fourier transform (FFT) technique. Results showed that the motor current signature analysis (MCSA) technique, and measurement of vibration technique have high possibility in the detection and diagnosis of most mechanical faults with high accuracy. Subsequently, diagnosi
... Show MoreMost intrusion detection systems are signature based that work similar to anti-virus but they are unable to detect the zero-day attacks. The importance of the anomaly based IDS has raised because of its ability to deal with the unknown attacks. However smart attacks are appeared to compromise the detection ability of the anomaly based IDS. By considering these weak points the proposed
system is developed to overcome them. The proposed system is a development to the well-known payload anomaly detector (PAYL). By
combining two stages with the PAYL detector, it gives good detection ability and acceptable ratio of false positive. The proposed system improve the models recognition ability in the PAYL detector, for a filtered unencrypt
Change detection is a technology ascertaining the changes of
specific features within a certain time Interval. The use of remotely
sensed image to detect changes in land use and land cover is widely
preferred over other conventional survey techniques because this
method is very efficient for assessing the change or degrading trends
of a region. In this research two remotely sensed image of Baghdad
city gathered by landsat -7and landsat -8 ETM+ for two time period
2000 and 2014 have been used to detect the most important changes.
Registration and rectification the two original images are the first
preprocessing steps was applied in this paper. Change detection using
NDVI subtractive has been computed, subtrac
This work explores the designing a system of an automated unmanned aerial vehicles (UAV( for objects detection, labelling, and localization using deep learning. This system takes pictures with a low-cost camera and uses a GPS unit to specify the positions. The data is sent to the base station via Wi-Fi connection.
The proposed system consists of four main parts. First, the drone, which was assembled and installed, while a Raspberry Pi4 was added and the flight path was controlled. Second, various programs that were installed and downloaded to define the parts of the drone and its preparation for flight. In addition, this part included programs for both Raspberry Pi4 and servo, along with protocols for communication, video transmi
... Show MoreIn this paper, an algorithm for reconstruction of a completely lost blocks using Modified
Hybrid Transform. The algorithms examined in this paper do not require a DC estimation
method or interpolation. The reconstruction achieved using matrix manipulation based on
Modified Hybrid transform. Also adopted in this paper smart matrix (Detection Matrix) to detect
the missing blocks for the purpose of rebuilding it. We further asses the performance of the
Modified Hybrid Transform in lost block reconstruction application. Also this paper discusses
the effect of using multiwavelet and 3D Radon in lost block reconstruction.
The current study was designed to investigate the presence of aflatoxin M1 in 25 samples of pasteurized canned milk which collected randomly from some Iraqi local markets using ELISA technique. Aflatoxin M1 was present in 21 samples, the concentration of aflatoxin M1 ranged from (0.25-50 ppb). UV radiation (365nm wave length) was used for detoxification of aflatoxin M1 (sample with highest concentration /50 ppb of aflatoxin M1 in two different volumes ((25 & 50 ml)) for two different time (15 & 30 min) and 30, 60, 90 cm distance between lamp and milk layer were used for this purpose). Results showed that distance between lamp and milk layer was the most effective parameter in reduction of aflatoxin M1, and whenever the distance increase the
... Show MoreBackground Subtraction (BGS) is one of the main techniques used for moving object detection which further utilized in video analysis, especially in video surveillance systems. Practically, acquiring a robust background (reference) image is a real challenge due to the dynamic change in the scene. Hence, a key point to BGS is background modeling, in which a model is built and repeatedly used to reconstruct the background image.
From N frames the proposed method store N pixels at location(x,y) in a buffer, then it classify pixel intensity values at that buffer using a proposed online clustering model based on the idea of relative run length, the cluster center with the highest frequency will be adopted as the background pixel
... Show More