Preferred Language
Articles
/
ijs-353
Construction of a Robust Background Model for Moving Object Detection in Video Sequence
...Show More Authors

Background Subtraction (BGS) is one of the main techniques used for moving object detection which further utilized in video analysis, especially in video surveillance systems. Practically, acquiring a robust background (reference) image is a real challenge due to the dynamic change in the scene. Hence, a key point to BGS is background modeling, in which a model is built and repeatedly used to reconstruct the background image.

From N frames the proposed method store N pixels at location(x,y) in a buffer, then it classify pixel intensity values at that buffer using a proposed online clustering model based on the idea of relative  run length, the cluster center with the highest frequency will be adopted as the background pixel value at location (x,y). For background updating, two approaches has been proposed to repeatedly update background image.                      The experiment results show that the average Precision, Recall and F-measure for the proposed method was 0.89, 0.96 and 0.93 respectively.  While the average time in  seconds  required to construct  background pixel from a buffer of size  50, 100 and 150 pixel  was 0.0022813 sec , 0.0510166 sec and 0.12240419 sec  respectively.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Dec 06 2021
Journal Name
Iraqi Journal Of Science
A Proposed Background Modeling Algorithm for Moving Object Detection Using Statistical Measures
...Show More Authors

Extracting moving object from video sequence is one of the most important steps
in the video-based analysis. Background subtraction is the most commonly used
moving object detection methods in video, in which the extracted object will be
feed to a higher-level process ( i.e. object localization, object tracking ).
The main requirement of background subtraction method is to construct a
stationary background model and then to compare every new coming frame with it
in order to detect the moving object.
Relied on the supposition that the background occurs with the higher appearance
frequency, a proposed background reconstruction algorithm has been presented
based on pixel intensity classification ( PIC ) approach.

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 02 2021
Journal Name
Iraqi Journal Of Science
Background modeling in video surveillance by using parallel computing
...Show More Authors

In the last years, the research of extraction the movable object from video sequence in application of computer vision become wide spread and well-known . in this paper the extraction of background model by using parallel computing is done by two steps : the first one using non-linear buffer to extraction frame from video sequence depending on the number of frame whether it is even or odd . the goal of this step is obtaining initial background when over half of training sequence contains foreground object . in the second step , The execution time of the traditional K-mean has been improved to obtain initial background through perform the k-mean by using parallel computing where the time has been minimized to 50% of the conventional time

... Show More
View Publication Preview PDF
Publication Date
Tue Sep 29 2020
Journal Name
Iraqi Journal Of Science
Shadow Elimination in Soccer Game Video using Background Subtraction and Sobel Operators
...Show More Authors

Object detection in real time is considered as a challenging problem. However, it is very important in a wide range of applications, especially in field of multimedia. The players and ball are the most important objects in soccer game videos and detecting them is a challenging task because of many difficulties, such as shadow and illumination, ball size, ball occluded by players or merged with lines, and similar appearance of players. To overcome these problems, we present a new system to detect the players and ball in real-time by using background subtraction and Sobel detection. The results were more accurate and approximately two times faster than those using only background subtraction.

View Publication Preview PDF
Scopus (1)
Crossref (2)
Scopus Crossref
Publication Date
Tue Jul 30 2024
Journal Name
Iraqi Journal Of Science
Frame-Based Change Detection Using Histogram and Threshold to Separate Moving Objects from Dynamic Background
...Show More Authors

      Detecting and subtracting the Motion objects from backgrounds is one of the most important areas. The development of cameras and their widespread use in most areas of security, surveillance, and others made face this problem. The difficulty of this area is unstable in the classification of the pixels (foreground or background). This paper proposed a suggested background subtraction algorithm based on the histogram. The classification threshold is adaptively calculated according to many tests. The performance of the proposed algorithms was compared with state-of-the-art methods in complex dynamic scenes.

View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Jan 10 2022
Journal Name
Iraqi Journal Of Science
Object Tracking and matching in a Video Stream based on SURF and Wavelet Transform
...Show More Authors

In computer vision, visual object tracking is a significant task for monitoring
applications. Tracking of object type is a matching trouble. In object tracking, one
main difficulty is to select features and build models which are convenient for
distinguishing and tracing the target. The suggested system for continuous features
descriptor and matching in video has three steps. Firstly, apply wavelet transform on
image using Haar filter. Secondly interest points were detected from wavelet image
using features from accelerated segment test (FAST) corner detection. Thirdly those
points were descripted using Speeded Up Robust Features (SURF). The algorithm
of Speeded Up Robust Features (SURF) has been employed and impl

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 10 2016
Journal Name
British Journal Of Applied Science & Technology
Robust Watermarking for Video Using Modulation Technique on RGB Domain
...Show More Authors

In this paper, a robust invisible watermarking system for digital video encoded by MPEG-4 is presented. The proposed scheme provides watermark hidden by embedding a secret message (watermark) in the sprite area allocated in reference frame (I-frame). The proposed system consists of two main units: (i) Embedding unit and (ii) Extraction unit. In the embedding unit, the system allocates the sprite blocks using motion compensation information. The allocated sprite area in each I–frame is used as hosting area for embedding watermark data. In the extraction unit, the system extracts the watermark data in order to check authentication and ownership of the video. The watermark data embedding method is Blocks average modulation applied on RGB dom

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jul 30 2023
Journal Name
Iraqi Journal Of Science
An Overview of Robust Video Watermarking Techniques
...Show More Authors

     Copyright hacking and piracy have increased as the Internet has grown in popularity and access to multimedia material has increased. Security, property protection, and authentication have all been achieved via watermarking techniques. This paper presents a summary of some recent efforts on video watermarking techniques, with an emphasis on studies from 2018 to 2022, as well as the various approaches, achievements, and attacks utilized as testing measures against these watermarking systems. According to the findings of this study, frequency-domain watermarking techniques are more popular and reliable than spatial domain watermarking approaches. Hybrid DCT and DWT are the two most used techniques and achieve good results in the fi

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Sun Mar 02 2008
Journal Name
Baghdad Science Journal
Design and construction of Video extractor
...Show More Authors

Design and construction of video extractor circuit require an understanding of several parameters, which include: Selector circuit, extracting circuit which contains sampling signal and multiplexing. At each radar pulse, the video signal is fed to one of the selector. The fast filter has a pass –band from 190 Hz to 1800 Hz. These frequencies correspond to targets having radial velocities laying between and 10 Kph and 200 Kph.Slow filter: 60 Hz to 230 Hz for radial velocities laying between 3.5 and 13 Kph.The video- extractor is organized in four PCB CG (A-B-C-D) each one having 16 selector. The sampling signal (ADS) (1-2-3-4) control the 4-line-to-16-line decoders. 8 multiplexers of 8 inputs each, are required for the multiplexing of the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Cpwr
Development of a workforce sustainability model for construction
...Show More Authors

Publication Date
Wed Sep 05 2007
Journal Name
Neural Network World
A canonical generic algorithm for likelihood estimator of first order moving average model parameter
...Show More Authors

The increasing availability of computing power in the past two decades has been use to develop new techniques for optimizing solution of estimation problem. Today's computational capacity and the widespread availability of computers have enabled development of new generation of intelligent computing techniques, such as our interest algorithm, this paper presents one of new class of stochastic search algorithm (known as Canonical Genetic' Algorithm ‘CGA’) for optimizing the maximum likelihood function strategy is composed of three main steps: recombination, mutation, and selection. The experimental design is based on simulating the CGA with different values of are compared with those of moment method. Based on MSE value obtained from bot

... Show More
Scopus (3)
Scopus