Preferred Language
Articles
/
ijs-1256
Homotopy Perturbation Method and Convergence Analysis for the Linear Mixed Volterra-Fredholm Integral Equations
...Show More Authors

In this paper, the homotopy perturbation method is presented for solving the second kind linear mixed Volterra-Fredholm integral equations. Then, Aitken method is used to accelerate the convergence. In this method, a series will be constructed whose sum is the solution of the considered integral equation. Convergence of the constructed series is discussed, and its proof is given; the error estimation is also obtained. For more illustration, the method is applied on several examples and programs, which are written in MATLAB (R2015a) to compute the results. The absolute errors are computed to clarify the efficiency of the method.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Numerical Solutions for the Nonlinear PDEs of Fractional Order by Using a New Double Integral Transform with Variational Iteration Method
...Show More Authors

This paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sun Mar 04 2018
Journal Name
Iraqi Journal Of Science
Improved High order Euler Method for Numerical Solution of Initial value Time- Lag Differential Equations
...Show More Authors

The goal of this paper is to expose a new numerical method for solving initial value time-lag of delay differential equations by employing a high order improving formula of Euler method known as third order Euler method. Stability condition is discussed in detail for the proposed technique. Finally some examples are illustrated to verify the validity, efficiency and accuracy of the method.

View Publication Preview PDF
Publication Date
Wed Jul 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A new technique for solving fractional nonlinear equations by sumudu transform and adomian decomposition method
...Show More Authors

A novel technique Sumudu transform Adomian decomposition method (STADM), is employed to handle some kinds of nonlinear time-fractional equations. We demonstrate that this method finds the solution without discretization or restrictive assumptions. This method is efficient, simple to implement, and produces good results. The fractional derivative is described in the Caputo sense. The solutions are obtained using STADM, and the results show that the suggested technique is valid and applicable and provides a more refined convergent series solution. The MATLAB software carried out all the computations and graphics. Moreover, a graphical representation was made for the solution of some examples. For integer and fractional order problems, solutio

... Show More
Publication Date
Wed Jul 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A new Technique For Solving Fractional Nonlinear Equations By Sumudu Transform and Adomian Decomposition Method
...Show More Authors

A novel technique Sumudu transform Adomian decomposition method (STADM), is employed to handle some kinds of nonlinear time-fractional equations. We demonstrate that this method finds the solution without discretization or restrictive assumptions. This method is efficient, simple to implement, and produces good results. The fractional derivative is described in the Caputo sense. The solutions are obtained using STADM, and the results show that the suggested technique is valid and applicable and provides a more refined convergent series solution. The MATLAB software carried out all the computations and graphics. Moreover, a graphical representation was made for the solution of some examples. For integer and fractional order problems, solu

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Jul 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Constructing RKM-Method for Solving Fractional Ordinary Differential Equations of Fifth-Order with Applications
...Show More Authors

This paper sheds the light on the vital role that fractional ordinary differential equations(FrODEs) play in the mathematical modeling and in real life, particularly in the physical conditions. Furthermore, if the problem is handled directly by using numerical method, it is a far more powerful and efficient numerical method in terms of computational time, number of function evaluations, and precision. In this paper, we concentrate on the derivation of the direct numerical methods for solving fifth-order FrODEs  in one, two, and three stages. Additionally, it is important to note that the RKM-numerical methods with two- and three-stages for solving fifth-order ODEs are convenient, for solving class's fifth-order FrODEs. Numerical exa

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jul 01 2018
Journal Name
Computers & Mathematics With Applications
Analytical and numerical solutions for the nonlinear Burgers and advection–diffusion equations by using a semi-analytical iterative method
...Show More Authors

View Publication
Crossref (19)
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
International Journal Of Mathematics Trends And Technology (ijmtt)
Some Statistical Properties of the Solutions of a System of two dimensional Integral Equations contains Beta distribution
...Show More Authors

Publication Date
Mon Dec 05 2022
Journal Name
Baghdad Science Journal
An Asymptotic Analysis of the Gradient Remediability Problem for Disturbed Distributed Linear Systems
...Show More Authors

The goal of this work is demonstrating, through the gradient observation of a   of type linear ( -systems), the possibility for reducing the effect of any disturbances (pollution, radiation, infection, etc.) asymptotically, by a suitable choice of related actuators of these systems. Thus, a class of  ( -system) was developed based on finite time  ( -system). Furthermore, definitions and some properties of this concept -system and asymptotically gradient controllable system ( -controllable) were stated and studied. More precisely, asymptotically gradient efficient actuators ensuring the weak asymptotically gradient compensation system ( -system) of known or unknown disturbances are examined. Consequently, under convenient hypo

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Fri Nov 24 2023
Journal Name
Iraqi Journal Of Science
New Turbidimetric-Continuous Flow Injection Analysis Method for The Determination of Chlorpromazine HCl in Pharmaceutical Preparation Using Linear Array Ayah 5SX1-T-1D-CFI Analyser
...Show More Authors

A new turbidimetric-flow injection method is described for the determination of chlorpromazine HCl in pure and pharmaceutical preparation. The method is characterized by simplicity, sensitivity and fast, it is based on formation of ion pair compound between chlorpromazine HCl and Potassium hexacyanoferrate(III) in an acid medium for the formation of greenish yellow precipitate. This precipitate was determined using homemade Linear Array Ayah 5SX1-T-1D continuous flow injection analyser. Optimum concentrations of chemical reactants, physical instrumental conditions have been investigated. The linear dynamic range of chlorpromazine HCl was 3-30 mmol.L-1 while correlation coefficient (r) was 0.9929 and percentage linearity (%r2) C.O.D was 9

... Show More
View Publication Preview PDF
Publication Date
Thu Apr 26 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Normalization Bernstein Basis For Solving Fractional Fredholm-Integro Differential Equation
...Show More Authors

In this work, we employ a new normalization Bernstein basis for solving linear Freadholm of fractional integro-differential equations  nonhomogeneous  of the second type (LFFIDEs). We adopt Petrov-Galerkian method (PGM) to approximate solution of the (LFFIDEs) via normalization Bernstein basis that yields linear system. Some examples are given and their results are shown in tables and figures, the Petrov-Galerkian method (PGM) is very effective and convenient and overcome the difficulty of traditional methods. We solve this problem (LFFIDEs) by the assistance of Matlab10.   

View Publication Preview PDF
Crossref