Preferred Language
Articles
/
ijs-1256
Homotopy Perturbation Method and Convergence Analysis for the Linear Mixed Volterra-Fredholm Integral Equations
...Show More Authors

In this paper, the homotopy perturbation method is presented for solving the second kind linear mixed Volterra-Fredholm integral equations. Then, Aitken method is used to accelerate the convergence. In this method, a series will be constructed whose sum is the solution of the considered integral equation. Convergence of the constructed series is discussed, and its proof is given; the error estimation is also obtained. For more illustration, the method is applied on several examples and programs, which are written in MATLAB (R2015a) to compute the results. The absolute errors are computed to clarify the efficiency of the method.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Finite Element Method With Linear Rectangular Element for Solving Nanoscale InAs⁄GaAs Quantum Ring Structures
...Show More Authors

        This paper is concerned with the solution of the nanoscale structures consisting of the   with an effective mass envelope function theory, the electronic states of the  quantum ring are studied.  In calculations, the effects due to the different effective masses of electrons in and out the rings are included. The energy levels of the electron are calculated in the different shapes of rings, i.e., that the inner radius of rings sensitively change the electronic states. The energy levels of the electron are not sensitively dependent on the outer radius for large rings. The structures of  quantum rings are studied by the one electronic band Hamiltonian effective mass approximati

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Methods And Objects Of Chemical Analysis
Partial Least Squares Method for the Multicomponent Analysis of Antibacterial Mixture
...Show More Authors

This study's objective is to assess how well UV spectrophotometry can be used in conjunction with multivariate calibration based on partial least squares (PLS) regression for concurrent quantitative analysis of antibacterial mixture (Levofloxacin (LIV), Metronidazole (MET), Rifampicin (RIF) and Sulfamethoxazole (SUL)) in their artificial mixtures and pharmaceutical formulations. The experimental calibration and validation matrixes were created using 42 and 39 samples, respectively. The concentration range taken into account was 0-17 μg/mL for all components. The calibration standards' absorbance measurements were made between 210 and 350 nm, with intervals of 0.2 nm. The associated parameters were examined in order to develop the optimal c

... Show More
Scopus Clarivate Crossref
Publication Date
Sun Oct 30 2022
Journal Name
Iraqi Journal Of Science
An Internet of Things Botnet Detection Model Using Regression Analysis and Linear Discrimination Analysis
...Show More Authors

The Internet of Things (IoT) has become a hot area of research in recent years due to the significant advancements in the semiconductor industry, wireless communication technologies, and the realization of its ability in numerous applications such as smart homes, health care, control systems, and military. Furthermore, IoT devices inefficient security has led to an increase cybersecurity risks such as IoT botnets, which have become a serious threat. To counter this threat there is a need to develop a model for detecting IoT botnets.

This paper's contribution is to formulate the IoT botnet detection problem and introduce multiple linear regression (MLR) for modelling IoT botnet features with discriminating capability and alleviatin

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
On The Convergence Speediness of K * and D-Iterations
...Show More Authors
Abstract<p>In this article, we introduced a new concept of mappings called δZA - Quasi contractive mapping and we study the K*- iteration process for approximation of fixed points, and we proved that this iteration process is faster than the existing leading iteration processes like Noor iteration process, CR -iteration process, SP and Karahan Two- step iteration process for 𝛿𝒵𝒜 − quasi contraction mappings. We supported our analytic proof by a numerical example.</p>
View Publication
Scopus (4)
Crossref (4)
Scopus Crossref
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Efficient Algorithm for Solving Fuzzy Singularly Perturbed Volterra Integro-Differential Equation
...Show More Authors

     In this paper, we design a fuzzy neural network to solve fuzzy singularly perturbed Volterra integro-differential equation by using a High Performance Training Algorithm such as the Levenberge-Marqaurdt (TrianLM) and the sigmoid function of the hidden units which is the hyperbolic tangent activation function. A fuzzy trial solution to fuzzy singularly perturbed Volterra integro-differential equation is written as a sum of two components. The first component meets the fuzzy requirements, however, it does not have any fuzzy adjustable parameters. The second component is a feed-forward fuzzy neural network with fuzzy adjustable parameters. The proposed method is compared with the analytical solutions. We find that the proposed meth

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Baghdad Science Journal
A novelty Multi-Step Associated with Laplace Transform Semi Analytic Technique for Solving Generalized Non-linear Differential Equations
...Show More Authors

 

   In this work, a novel technique to obtain an accurate solutions to nonlinear form by multi-step combination with Laplace-variational approach (MSLVIM) is introduced. Compared with the  traditional approach for variational it overcome all difficulties and enable to provide us more an accurate solutions with extended of the convergence region as well as covering to larger intervals which providing us a continuous representation of approximate analytic solution and it give more better information of the solution over the whole time interval. This technique is more easier for obtaining the general Lagrange multiplier with reduces the time and calculations. It converges rapidly to exact formula with simply computable terms wit

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Thu May 04 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Discuss of Error Analysis of Gauss-Jordan Elimination For Linear Algebraic Systems
...Show More Authors

The paper establishes explicit representations of the errors and residuals of approximate
solutions of triangular linear systems by Jordan elimination and of general linear algebraic
systems by Gauss-Jordan elimination as functions of the data perturbations and the rounding
errors in arithmetic floating-point operations. From these representations strict optimal
componentwise error and residual bounds are derived. Further, stability estimates for the
solutions are discussed. The error bounds for the solutions of triangular linear systems are
compared to the optimal error bounds for the solutions by back substitution and by Gaussian
elimination with back substitution, respectively. The results confirm in a very

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 06 2016
Journal Name
Baghdad Science Journal
A Note on the Perturbation of arithmetic expressions
...Show More Authors

In this paper we present the theoretical foundation of forward error analysis of numerical algorithms under;• Approximations in "built-in" functions.• Rounding errors in arithmetic floating-point operations.• Perturbations of data.The error analysis is based on linearization method. The fundamental tools of the forward error analysis are system of linear absolute and relative a prior and a posteriori error equations and associated condition numbers constituting optimal of possible cumulative round – off errors. The condition numbers enable simple general, quantitative bounds definitions of numerical stability. The theoretical results have been applied a Gaussian elimination, and have proved to be very effective means of both a prior

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jun 07 2009
Journal Name
Baghdad Science Journal
A New Spectrophotometric Method for Analysis of Allopurinol in Aqueous Solutions and Pharmaceutical Preparations
...Show More Authors

A new method for determination of allopurinol in microgram level depending on its ability to reduce the yellow absorption spectrum of (I-3) at maximum wavelength ( ?max 350nm) . The optimum conditions such as "concentration of reactant materials , time of sitting and order of addition were studied to get a high sensitivity ( ? = 27229 l.mole-1.cm-1) sandal sensitivity : 0.0053 µg cm-2 ,with wide range of calibration curve ( 1 – 9 µg.ml-1 ) good stability (more then24 hr.) and repeatability ( RSD % : 2.1 -2.6 % ) , the Recovery % : ( 98.17 – 100.5 % ) , the Erel % ( 0.50 -1.83 % ) and the interference's of Xanthine , Cystein , Creatinine , Urea and the Glucose in 20 , 40 , 60 fold of analyate were also studied .

View Publication Preview PDF
Crossref
Publication Date
Tue Sep 29 2020
Journal Name
Iraqi Journal Of Science
Mixed Implicit Galerkin – Frank Wolf, Gradient and Gradient Projection Methods for Solving Classical Optimal Control Problem Governed by Variable Coefficients, Linear Hyperbolic, Boundary Value Problem
...Show More Authors

This paper deals with testing a numerical solution for the discrete classical optimal control problem governed by a linear hyperbolic boundary value problem with variable coefficients. When the discrete classical control is fixed, the proof of the existence and uniqueness theorem for the discrete solution of the discrete weak form is achieved. The existence theorem for the discrete classical optimal control and the necessary conditions for optimality of the problem are proved under suitable assumptions. The discrete classical optimal control problem (DCOCP) is solved by using the mixed Galerkin finite element method to find the solution of the discrete weak form (discrete state). Also, it is used to find the solution for the discrete adj

... Show More
View Publication Preview PDF
Scopus Crossref