In this paper we study the concepts of copure submodules and coregular
modules. Many results related with these concepts are obtained.
Let be a right module over an arbitrary ring with identity and . In this work, the coclosed rickart modules as a generalization of rickart modules is given. We say a module over coclosed rickart if for each , is a coclosed submodule of . Basic results over this paper are introduced and connections between these modules and otherwise notions are investigated.
Gangyong Lee, S.Tariq Rizvi, and Cosmin S.Roman studied Rickart modules.
The main purpose of this paper is to develop the properties of Rickart modules .
We prove that each injective and prime module is a Rickart module. And we give characterizations of some kind of rings in term of Rickart modules.
In this paper, we develop the work of Ghawi on close dual Rickart modules and discuss y-closed dual Rickart modules with some properties. Then, we prove that, if are y-closed simple -modues and if -y-closed is a dual Rickart module, then either Hom ( ) =0 or . Also, we study the direct sum of y-closed dual Rickart modules.
In this paper, we present the almost approximately nearly quasi compactly packed (submodules) modules as an application of the almost approximately nearly quasiprime submodule. We give some examples, remarks, and properties of this concept. Also, as the strong form of this concept, we introduce the strongly, almost approximately nearly quasi compactly packed (submodules) modules. Moreover, we present the definitions of almost approximately nearly quasiprime radical submodules and almost approximately nearly quasiprime radical submodules and give some basic properties of these concepts that will be needed in section four of this research. We study these two concepts extensively.
Let R be a ring with 1 and W is a left Module over R. A Submodule D of an R-Module W is small in W(D ≪ W) if whenever a Submodule V of W s.t W = D + V then V = W. A proper Submodule Y of an R-Module W is semismall in W(Y ≪_S W) if Y = 0 or Y/F ≪ W/F ∀ nonzero Submodules F of Y. A Submodule U of an R-Module E is essentially semismall(U ≪es E), if for every non zero semismall Submodule V of E, V∩U ≠ 0. An R-Module E is essentially semismall quasi-Dedekind(ESSQD) if Hom(E/W, E) = 0 ∀ W ≪es E. A ring R is ESSQD if R is an ESSQD R-Module. An R-Module E is a scalar R-Module if, ∀ , ∃ s.t V(e) = ze ∀ . In this paper, we study the relationship between ESSQD Modules with scalar and multiplication Modules. We show that
... Show Morehe concept of small monoform module was introduced by Hadi and Marhun, where a module U is called small monoform if for each non-zero submodule V of U and for every non-zero homomorphism f ∈ Hom R (V, U), implies that ker f is small submodule of V. In this paper the author dualizes this concept; she calls it co-small monoform module. Many fundamental properties of co-small monoform module are given. Partial characterization of co-small monoform module is established. Also, the author dualizes the concept of small quasi-Dedekind modules which given by Hadi and Ghawi. She show that co-small monoform is contained properly in the class of the dual of small quasi-Dedekind modules. Furthermore, some subclasses of co-small monoform are investiga
... Show MoreIn this paper, we introduce the concept of e-small Projective modules as a generlization of Projective modules.
Throughout this work we introduce the notion of Annihilator-closed submodules, and we give some basic properties of this concept. We also introduce a generalization for the Extending modules, namely Annihilator-extending modules. Some fundamental properties are presented as well as we discuss the relation between this concept and some other related concepts.
In this work, we introduce a new generalization of both Rationally extending and Goldie extending which is Goldie Rationally extending module which is known as follows: if for any submodule K of an R-module M there is a direct summand U of M (denoted by U⊆_⊕ M) such that K β_r U. A β_r is a relation of K⊆M and U⊆M, which defined as K β_r U if and only if K ⋂U⊆_r K and K⋂U⊆_r U.
Let R be a commutative ring with 1 and M be a (left) unitary R – module. This essay gives generalizations for the notions prime module and some concepts related to it. We termed an R – module M as semi-essentially prime if annR (M) = annR (N) for every non-zero semi-essential submodules N of M. Given some of their advantages characterizations and examples, and we study the relation between these and some classes of modules.